Generic placeholder image

Current Drug Metabolism

Editor-in-Chief

ISSN (Print): 1389-2002
ISSN (Online): 1875-5453

Review Article

Therapeutics and Research Related to Glioblastoma: Advancements and Future Targets

Author(s): Vishal Chavda, Vimal Patel, Dhananjay Yadav, Jigar Shah, Snehal Patel* and Jun-O Jin*

Volume 21, Issue 3, 2020

Page: [186 - 198] Pages: 13

DOI: 10.2174/1389200221666200408083950

Price: $65

Abstract

Glioblastoma, the most common primary brain tumor, has been recognized as one of the most lethal and fatal human tumors. It has a dismal prognosis, and survival after diagnosis is less than 15 months. Surgery and radiotherapy are the only available treatment options at present. However, numerous approaches have been made to upgrade in vivo and in vitro models with the primary goal of assessing abnormal molecular pathways that would be suitable targets for novel therapeutic approaches. Novel drugs, delivery systems, and immunotherapy strategies to establish new multimodal therapies that target the molecular pathways involved in tumor initiation and progression in glioblastoma are being studied. The goal of this review was to describe the pathophysiology, neurodegeneration mechanisms, signaling pathways, and future therapeutic targets associated with glioblastomas. The key features have been detailed to provide an up-to-date summary of the advancement required in current diagnosis and therapeutics for glioblastoma. The role of nanoparticulate system graphene quantum dots as suitable therapy for glioblastoma has also been discussed.

Keywords: Glioblastoma, immunology, therapeutics, GQDs, cancer, diagnosis.

Graphical Abstract
[1]
Wong, R.S. Apoptosis in cancer: from pathogenesis to treatment. J. Exp. Clin. Cancer Res., 2011, 30, 87.
[http://dx.doi.org/10.1186/1756-9966-30-87] [PMID: 21943236]
[2]
Gabriel, J.A. The biology of cancer; Wiley Online Library, 2007.
[http://dx.doi.org/10.1002/9780470988121]
[3]
Lowe, S.W.; Lin, A.W. Apoptosis in cancer. Carcinogenesis, 2000, 21(3), 485-495.
[http://dx.doi.org/10.1093/carcin/21.3.485] [PMID: 10688869]
[4]
Koff, J.L.; Ramachandiran, S.; Bernal-Mizrachi, L. A time to kill: targeting apoptosis in cancer. Int. J. Mol. Sci., 2015, 16(2), 2942-2955.
[http://dx.doi.org/10.3390/ijms16022942] [PMID: 25636036]
[5]
Zamorano, S.; Rojas-Rivera, D.; Lisbona, F.; Parra, V.; Court, F.A.; Villegas, R.; Cheng, E.H.; Korsmeyer, S.J.; Lavandero, S.; Hetz, C. A BAX/BAK and cyclophilin D-independent intrinsic apoptosis pathway. PLoS One, 2012, 7(6): e37782
[http://dx.doi.org/10.1371/journal.pone.0037782] [PMID: 22719850]
[6]
Pistritto, G.; Trisciuoglio, D.; Ceci, C.; Garufi, A.; D’Orazi, G. Apoptosis as anticancer mechanism: function and dysfunction of its modulators and targeted therapeutic strategies. Aging (Albany NY), 2016, 8(4), 603-619.
[http://dx.doi.org/10.18632/aging.100934] [PMID: 27019364]
[7]
Chen, R.; Smith-Cohn, M.; Cohen, A.L.; Colman, H. Glioma subclassifications and their clinical significance. Neurotherapeutics, 2017, 14(2), 284-297.
[http://dx.doi.org/10.1007/s13311-017-0519-x] [PMID: 28281173]
[8]
Armstrong, T.S.; Grant, R.; Gilbert, M.R.; Lee, J.W.; Norden, A.D. Epilepsy in glioma patients: mechanisms, management, and impact of anticonvulsant therapy. Neuro-oncol., 2016, 18(6), 779-789.
[http://dx.doi.org/10.1093/neuonc/nov269] [PMID: 26527735]
[9]
Nakada, M.; Kita, D.; Watanabe, T.; Hayashi, Y.; Teng, L.; Pyko, I.V.; Hamada, J. Aberrant signaling pathways in glioma. Cancers (Basel), 2011, 3(3), 3242-3278.
[http://dx.doi.org/10.3390/cancers3033242] [PMID: 24212955]
[10]
Arcaro, A.; Guerreiro, A.S. The phosphoinositide 3-kinase pathway in human cancer: genetic alterations and therapeutic implications. Curr. Genomics, 2007, 8(5), 271-306.
[http://dx.doi.org/10.2174/138920207782446160] [PMID: 19384426]
[11]
Montor, W.R.; Salas, A.R.O.S.E.; Melo, F.H.M. Receptor tyrosine kinases and downstream pathways as druggable targets for cancer treatment: the current arsenal of inhibitors. Mol. Cancer, 2018, 17(1), 55.
[http://dx.doi.org/10.1186/s12943-018-0792-2] [PMID: 29455659]
[12]
Xu, J.; Margol, A.; Asgharzadeh, S.; Erdreich-Epstein, A. Pediatric brain tumor cell lines. J. Cell. Biochem., 2015, 116(2), 218-224.
[http://dx.doi.org/10.1002/jcb.24976] [PMID: 25211508]
[13]
Xie, Y.; Bergström, T.; Jiang, Y.; Johansson, P.; Marinescu, V.D.; Lindberg, N.; Segerman, A.; Wicher, G.; Niklasson, M.; Baskaran, S.; Sreedharan, S.; Everlien, I.; Kastemar, M.; Hermansson, A.; Elfineh, L.; Libard, S.; Holland, E.C.; Hesselager, G.; Alafuzoff, I.; Westermark, B.; Nelander, S.; Forsberg-Nilsson, K.; Uhrbom, L. The human glioblastoma cell culture resource: validated cell models representing all molecular subtypes. EBioMedicine, 2015, 2(10), 1351-1363.
[http://dx.doi.org/10.1016/j.ebiom.2015.08.026] [PMID: 26629530]
[14]
Rajesh, Y.; Pal, I.; Banik, P.; Chakraborty, S.; Borkar, S.A.; Dey, G.; Mukherjee, A.; Mandal, M. Insights into molecular therapy of glioma: current challenges and next generation blueprint. Acta Pharmacol. Sin., 2017, 38(5), 591-613.
[http://dx.doi.org/10.1038/aps.2016.167] [PMID: 28317871]
[15]
Rosa, R.; Monteleone, F.; Zambrano, N.; Bianco, R. In vitro and in vivo models for analysis of resistance to anticancer molecular therapies. Curr. Med. Chem., 2014, 21(14), 1595-1606.
[http://dx.doi.org/10.2174/09298673113209990226] [PMID: 23992330]
[16]
Grady, W.M.; Ulrich, C.M. DNA alkylation and DNA methylation: cooperating mechanisms driving the formation of colorectal adenomas and adenocarcinomas? Gut, 2007, 56(3), 318-320.
[http://dx.doi.org/10.1136/gut.2006.106849] [PMID: 17339242]
[17]
Feitsma, H.; Akay, A.; Cuppen, E. Alkylation damage causes MMR-dependent chromosomal instability in vertebrate embryos. Nucleic Acids Res., 2008, 36(12), 4047-4056.
[http://dx.doi.org/10.1093/nar/gkn341] [PMID: 18522974]
[18]
Huszthy, P.C.; Daphu, I.; Niclou, S.P.; Stieber, D.; Nigro, J.M.; Sakariassen, P.O.; Miletic, H.; Thorsen, F.; Bjerkvig, R. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-oncol., 2012, 14(8), 979-993.
[http://dx.doi.org/10.1093/neuonc/nos135] [PMID: 22679124]
[19]
Stylli, S.S.; Luwor, R.B.; Ware, T.M.; Tan, F.; Kaye, A.H. Mouse models of glioma. J. Clin. Neurosci., 2015, 22(4), 619-626.
[http://dx.doi.org/10.1016/j.jocn.2014.10.013] [PMID: 25698543]
[20]
Hanif, F.; Muzaffar, K.; Perveen, K.; Malhi, S.M.; Simjee, ShU. Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac. J. Cancer Prev., 2017, 18(1), 3-9.
[PMID: 28239999]
[21]
Labreche, K. Genetic Susceptibility and Molecular Characterization of Glioma; Paris, Saclay, 2018.
[22]
Forst, D.A.; Nahed, B.V.; Loeffler, J.S.; Batchelor, T.T. Low-grade gliomas. Oncologist, 2014, 19(4), 403-413.
[http://dx.doi.org/10.1634/theoncologist.2013-0345] [PMID: 24664484]
[23]
Cha, S. Update on brain tumor imaging: from anatomy to physiology. AJNR Am. J. Neuroradiol., 2006, 27(3), 475-487.
[PMID: 16551981]
[24]
Schittenhelm, J. Diagnostic evaluation of diffuse gliomas.Advances in the Biology, Imaging and Therapies for Glioblastoma; Chen, C., Ed.; IntechOpen: London, 2011, p. 199.
[25]
Gladson, C.L.; Prayson, R.A.; Liu, W.M. The pathobiology of glioma tumors. Annu. Rev. Pathol., 2010, 5, 33-50.
[http://dx.doi.org/10.1146/annurev-pathol-121808-102109] [PMID: 19737106]
[26]
Ahmed, R.; Oborski, M.J.; Hwang, M.; Lieberman, F.S.; Mountz, J.M. Malignant gliomas: current perspectives in diagnosis, treatment, and early response assessment using advanced quantitative imaging methods. Cancer Manag. Res., 2014, 6, 149-170.
[PMID: 24711712]
[27]
Iacob, G.; Dinca, E.B. Current data and strategy in glioblastoma multiforme. J. Med. Life, 2009, 2(4), 386-393.
[PMID: 20108752]
[28]
Safari, M.; Khoshnevisan, A. Cancer stem cells and chemoresistance in glioblastoma multiform: a review article. J. Stem Cells, 2015, 10(4), 271-285.
[PMID: 27144829]
[29]
Nagarajan, R.P.; Costello, J.F. Epigenetic mechanisms in glioblastoma multiforme.Seminars in cancer biology; Fojo, A.T., Ed.; Elsevier: Amsterdam, 2009, pp. 188-197.
[30]
Nagarajan, R.P.; Costello, J.F. CNS Cancer; Springer: New York, 2009.
[http://dx.doi.org/10.1007/978-1-60327-553-8_26]
[31]
Gu, J.; Liu, Y.; Kyritsis, A.P.; Bondy, M.L. Molecular epidemiology of primary brain tumors. Neurotherapeutics, 2009, 6(3), 427-435.
[http://dx.doi.org/10.1016/j.nurt.2009.05.001] [PMID: 19560733]
[32]
Gillies, R.J.; Verduzco, D.; Gatenby, R.A. Evolutionary dynamics of carcinogenesis and why targeted therapy does not work. Nat. Rev. Cancer, 2012, 12(7), 487-493.
[http://dx.doi.org/10.1038/nrc3298] [PMID: 22695393]
[33]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: the next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013] [PMID: 21376230]
[34]
Peixoto, A.; Relvas-Santos, M.; Azevedo, R.; Santos, L.L.; Ferreira, J.A. Protein glycosylation and tumor microenvironment alterations driving cancer hallmarks. Front. Oncol., 2019, 9, 380-380.
[http://dx.doi.org/10.3389/fonc.2019.00380] [PMID: 31157165]
[35]
Upreti, M.; Jyoti, A.; Sethi, P. Tumor microenvironment and nanotherapeutics. Transl. Cancer Res., 2013, 2(4), 309-319.
[PMID: 24634853]
[36]
Wang, M.; Zhao, J.; Zhang, L.; Wei, F.; Lian, Y.; Wu, Y.; Gong, Z.; Zhang, S.; Zhou, J.; Cao, K.; Li, X.; Xiong, W.; Li, G.; Zeng, Z.; Guo, C. Role of tumor microenvironment in tumorigenesis. J. Cancer, 2017, 8(5), 761-773.
[http://dx.doi.org/10.7150/jca.17648] [PMID: 28382138]
[37]
Wei, X.; Chen, X.; Ying, M.; Lu, W. Brain tumor-targeted drug delivery strategies. Acta Pharm. Sin. B, 2014, 4(3), 193-201.
[http://dx.doi.org/10.1016/j.apsb.2014.03.001] [PMID: 26579383]
[38]
Nishida, N.; Yano, H.; Nishida, T.; Kamura, T.; Kojiro, M. Angiogenesis in cancer. Vasc. Health Risk Manag., 2006, 2(3), 213-219.
[http://dx.doi.org/10.2147/vhrm.2006.2.3.213] [PMID: 17326328]
[39]
Espana-Serrano, L.; Chougule, M.B. Enhanced anticancer activity of PF-04691502, a dual PI3K/mTOR inhibitor, in combination with VEGF siRNA against non-small-cell lung cancer. Mol. Ther. Nucleic Acids, 2016, 5(11), e384-e384.
[http://dx.doi.org/10.1038/mtna.2016.90] [PMID: 27845769]
[40]
Hassanpour, M.; Rezabakhsh, A.; Pezeshkian, M.; Rahbarghazi, R.; Nouri, M. Distinct role of autophagy on angiogenesis: highlights on the effect of autophagy in endothelial lineage and progenitor cells. Stem Cell Res. Ther., 2018, 9(1), 305-305.
[http://dx.doi.org/10.1186/s13287-018-1060-5] [PMID: 30409213]
[41]
Kardideh, B.; Samimi, Z.; Norooznezhad, F.; Kiani, S.; Mansouri, K. Autophagy, cancer and angiogenesis: where is the link? Cell Biosci., 2019, 9, 65.
[http://dx.doi.org/10.1186/s13578-019-0327-6] [PMID: 31428311]
[42]
Crespo, S.; Kind, M.; Arcaro, A. The role of the PI3K/AKT/mTOR pathway in brain tumor metastasis. J. Cancer Metastasis Treat., 2016, 2, 80-89.
[http://dx.doi.org/10.20517/2394-4722.2015.72]
[43]
Montelli, Tde.C.; Peraçoli, M.T.; Rogatto, S.R.; Kaneno, R.; do Prado, C.H.; Rocha, Pde.M. Genetic and modifying factors that determine the risk of brain tumors. Cent. Nerv. Syst. Agents Med. Chem., 2011, 11(1), 8-30.
[http://dx.doi.org/10.2174/187152411794961095] [PMID: 20528763]
[44]
Adel Fahmideh, M.; Lavebratt, C.; Schüz, J.; Röösli, M.; Tynes, T.; Grotzer, M.A.; Johansen, C.; Kuehni, C.E.; Lannering, B.; Prochazka, M.; Schmidt, L.S.; Feychting, M. Common genetic variations in cell cycle and DNA repair pathways associated with pediatric brain tumor susceptibility. Oncotarget, 2016, 7(39), 63640-63650.
[http://dx.doi.org/10.18632/oncotarget.11575] [PMID: 27613841]
[45]
Pan, E.; Prados, M. Familial tumors syndromes of the central nervous system. Holland-Frei cancer medicine; BC Decker: Hamilton, ON, 2003.
[46]
Kyritsis, A.P.; Bondy, M.L.; Rao, J.S.; Sioka, C. Inherited predisposition to glioma. Neuro-oncol., 2010, 12(1), 104-113.
[http://dx.doi.org/10.1093/neuonc/nop011] [PMID: 20150373]
[47]
Hulsebos, T.J.M.; Troost, D.; Leenstra, S. Molecular-genetic characterisation of gliomas that recur as same grade or higher grade tumours. J. Neurol. Neurosurg. Psychiatry, 2004, 75(5), 723-726.
[http://dx.doi.org/10.1136/jnnp.2003.025031] [PMID: 15090567]
[48]
Singh, S.K.; Clarke, I.D.; Terasaki, M.; Bonn, V.E.; Hawkins, C.; Squire, J.; Dirks, P.B. Identification of a cancer stem cell in human brain tumors. Cancer Res., 2003, 63(18), 5821-5828.
[PMID: 14522905]
[49]
Rühlemann, M.C.; Degenhardt, F.; Thingholm, L.B.; Wang, J.; Skiecevičienė, J.; Rausch, P.; Hov, J.R.; Lieb, W.; Karlsen, T.H.; Laudes, M.; Baines, J.F.; Heinsen, F.A.; Franke, A. Application of the distance-based F test in an mGWAS investigating β diversity of intestinal microbiota identifies variants in SLC9A8 (NHE8) and 3 other loci. Gut Microbes, 2018, 9(1), 68-75.
[http://dx.doi.org/10.1080/19490976.2017.1356979] [PMID: 28816579]
[50]
Lee, S-T.; Bracci, P.; Zhou, M.; Rice, T.; Wiencke, J.; Wrensch, M.; Wiemels, J. Interaction of allergy history and antibodies to specific varicella-zoster virus proteins on glioma risk. Int. J. Cancer, 2014, 134(9), 2199-2210.
[http://dx.doi.org/10.1002/ijc.28535] [PMID: 24127236]
[51]
Suzuki, A.; Leland, P.; Joshi, B.H.; Puri, R.K. Targeting of IL-4 and IL-13 receptors for cancer therapy. Cytokine, 2015, 75(1), 79-88.
[http://dx.doi.org/10.1016/j.cyto.2015.05.026] [PMID: 26088753]
[52]
Weis, A.M.; Soto, R.; Round, J.L. Commensal regulation of T cell survival through Erdr1. Gut Microbes, 2018, 9(5), 458-464.
[http://dx.doi.org/10.1080/19490976.2018.1441662] [PMID: 29543554]
[53]
Schwartzbaum, J.A.; Fisher, J.L.; Aldape, K.D.; Wrensch, M. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol., 2006, 2(9), 494-503.
[http://dx.doi.org/10.1038/ncpneuro0289] [PMID: 16932614]
[54]
Sokol, H.; Jegou, S.; McQuitty, C.; Straub, M.; Leducq, V.; Landman, C.; Kirchgesner, J.; Le Gall, G.; Bourrier, A.; Nion-Larmurier, I.; Cosnes, J.; Seksik, P.; Richard, M.L.; Beaugerie, L. Specificities of the intestinal microbiota in patients with inflammatory bowel disease and Clostridium difficile infection. Gut Microbes, 2018, 9(1), 55-60.
[http://dx.doi.org/10.1080/19490976.2017.1361092] [PMID: 28786749]
[55]
Gutmann, D.H. Using neurofibromatosis-1 to better understand and treat pediatric low-grade glioma. J. Child Neurol., 2008, 23(10), 1186-1194.
[http://dx.doi.org/10.1177/0883073808321061] [PMID: 18952585]
[56]
Seeger-Nukpezah, T.; Little, J.L.; Serzhanova, V.; Golemis, E.A. Cilia and cilia-associated proteins in cancer. Drug Discov. Today Dis. Mech., 2013, 10(3-4), e135-e142.
[http://dx.doi.org/10.1016/j.ddmec.2013.03.004] [PMID: 24982684]
[57]
Leroy, B.; Ballinger, M.L.; Baran-Marszak, F.; Bond, G.L.; Braithwaite, A.; Concin, N.; Donehower, L.A.; El-Deiry, W.S.; Fenaux, P.; Gaidano, G.; Langerød, A.; Hellstrom-Lindberg, E.; Iggo, R.; Lehmann-Che, J.; Mai, P.L.; Malkin, D.; Moll, U.M.; Myers, J.N.; Nichols, K.E.; Pospisilova, S.; Ashton-Prolla, P.; Rossi, D.; Savage, S.A.; Strong, L.C.; Tonin, P.N.; Zeillinger, R.; Zenz, T.; Fraumeni, J.F., Jr; Taschner, P.E.; Hainaut, P.; Soussi, T. Recommended guidelines for validation, quality control, and reporting of TP53 variants in clinical practice. Cancer Res., 2017, 77(6), 1250-1260.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-2179] [PMID: 28254861]
[58]
Ellisen, L.W.; Haber, D.A. Principles of Clinical Cancer Genetics; Springer: New York, 2010.
[59]
Zhang, X.; Zhang, W.; Cao, W-D.; Cheng, G.; Zhang, Y-Q. Glioblastoma multiforme: Molecular characterization and current treatment strategy (Review). Exp. Ther. Med., 2012, 3(1), 9-14.
[http://dx.doi.org/10.3892/etm.2011.367] [PMID: 22969836]
[60]
Lovely, M.P. Symptom management of brain tumor patients. Semi. Oncol. Nurs., 2004, 20(4), 273-283.
[61]
Khasraw, M.; Lassman, A.B. Advances in the treatment of malignant gliomas. Curr. Oncol. Rep., 2010, 12(1), 26-33.
[http://dx.doi.org/10.1007/s11912-009-0077-4] [PMID: 20425605]
[62]
Hendler, T.; Pianka, P.; Sigal, M.; Kafri, M.; Ben-Bashat, D.; Constantini, S.; Graif, M.; Fried, I.; Assaf, Y. Delineating gray and white matter involvement in brain lesions: three-dimensional alignment of functional magnetic resonance and diffusion-tensor imaging. J. Neurosurg., 2003, 99(6), 1018-1027.
[http://dx.doi.org/10.3171/jns.2003.99.6.1018] [PMID: 14705730]
[63]
Bush, N.A.O.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40(1), 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8] [PMID: 27085859]
[64]
Dowling, C.; Bollen, A.W.; Noworolski, S.M.; McDermott, M.W.; Barbaro, N.M.; Day, M.R.; Henry, R.G.; Chang, S.M.; Dillon, W.P.; Nelson, S.J.; Vigneron, D.B. Preoperative proton MR spectroscopic imaging of brain tumors: correlation with histopathologic analysis of resection specimens. AJNR Am. J. Neuroradiol., 2001, 22(4), 604-612.
[PMID: 11290466]
[65]
Burtscher, I.M.; Skagerberg, G.; Geijer, B.; Englund, E.; Ståhlberg, F.; Holtås, S. Proton MR spectroscopy and preoperative diagnostic accuracy: an evaluation of intracranial mass lesions characterized by stereotactic biopsy findings. AJNR Am. J. Neuroradiol., 2000, 21(1), 84-93.
[PMID: 10669230]
[66]
Denic, A.; Macura, S.I.; Mishra, P.; Gamez, J.D.; Rodriguez, M.; Pirko, I. MRI in rodent models of brain disorders. Neurotherapeutics, 2011, 8(1), 3-18.
[http://dx.doi.org/10.1007/s13311-010-0002-4] [PMID: 21274681]
[67]
Toh, C-H.; Castillo, M.; Wong, A.M.; Wei, K-C.; Wong, H-F.; Ng, S-H.; Wan, Y-L. Primary cerebral lymphoma and glioblastoma multiforme: differences in diffusion characteristics evaluated with diffusion tensor imaging. AJNR Am. J. Neuroradiol., 2008, 29(3), 471-475.
[http://dx.doi.org/10.3174/ajnr.A0872] [PMID: 18065516]
[68]
Moon, W-J.; Choi, J.W.; Roh, H.G.; Lim, S.D.; Koh, Y-C. Imaging parameters of high grade gliomas in relation to the MGMT promoter methylation status: the CT, diffusion tensor imaging, and perfusion MR imaging. Neuroradiology, 2012, 54(6), 555-563.
[http://dx.doi.org/10.1007/s00234-011-0947-y] [PMID: 21833736]
[69]
Pirotte, B.; Goldman, S.; Massager, N.; David, P.; Wikler, D.; Lipszyc, M.; Salmon, I.; Brotchi, J.; Levivier, M. Combined use of 18F-fluorodeoxyglucose and 11C-methionine in 45 positron emission tomography-guided stereotactic brain biopsies. J. Neurosurg., 2004, 101(3), 476-483.
[http://dx.doi.org/10.3171/jns.2004.101.3.0476] [PMID: 15352606]
[70]
Venneti, S.; Dunphy, M.P.; Zhang, H.; Pitter, K.L.; Zanzonico, P.; Campos, C.; Carlin, S.D.; La Rocca, G.; Lyashchenko, S.; Ploessl, K. Glutamine-based PET imaging facilitates enhanced metabolic evaluation of gliomas in vivo. Sci. Transl. Med., 2015, 7(274): 274ra17
[http://dx.doi.org/10.1126/scitranslmed.aaa1009]
[71]
la Fougère, C.; Suchorska, B.; Bartenstein, P.; Kreth, F-W.; Tonn, J-C. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro-oncol., 2011, 13(8), 806-819.
[http://dx.doi.org/10.1093/neuonc/nor054] [PMID: 21757446]
[72]
Omuro, A.M.; Faivre, S.; Raymond, E. Lessons learned in the development of targeted therapy for malignant gliomas. Mol. Cancer Ther., 2007, 6(7), 1909-1919.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0047] [PMID: 17620423]
[73]
Castro, M.G.; Cowen, R.; Williamson, I.K.; David, A.; Jimenez-Dalmaroni, M.J.; Yuan, X.; Bigliari, A.; Williams, J.C.; Hu, J.; Lowenstein, P.R. Current and future strategies for the treatment of malignant brain tumors. Pharmacol. Ther., 2003, 98(1), 71-108.
[http://dx.doi.org/10.1016/S0163-7258(03)00014-7] [PMID: 12667889]
[74]
Nagarajan, R.P.; Costello, J.F. Molecular epigenetics and genetics in neuro-oncology. Neurotherapeutics, 2009, 6(3), 436-446.
[http://dx.doi.org/10.1016/j.nurt.2009.04.002] [PMID: 19560734]
[75]
Tanase, C.P.; Enciu, A-M.; Mihai, S.; Neagu, A.I.; Calenic, B.; Cruceru, M.L. Anti-cancer therapies in high grade gliomas. Curr. Proteomics, 2013, 10(3), 246-260.
[http://dx.doi.org/10.2174/1570164611310030007] [PMID: 24228024]
[76]
Duffau, H.; Khalil, I.; Gatignol, P.; Denvil, D.; Capelle, L. Surgical removal of corpus callosum infiltrated by low-grade glioma: functional outcome and oncological considerations. J. Neurosurg., 2004, 100(3), 431-437.
[http://dx.doi.org/10.3171/jns.2004.100.3.0431] [PMID: 15035278]
[77]
Altaner, C.; Altanerova, V.; Cihova, M.; Ondicova, K.; Rychly, B.; Baciak, L.; Mravec, B. Complete regression of glioblastoma by mesenchymal stem cells mediated prodrug gene therapy simulating clinical therapeutic scenario. Int. J. Cancer, 2014, 134(6), 1458-1465.
[http://dx.doi.org/10.1002/ijc.28455] [PMID: 24038033]
[78]
Aldape, K.; Brindle, K.M.; Chesler, L.; Chopra, R.; Gajjar, A.; Gilbert, M.R.; Gottardo, N.; Gutmann, D.H.; Hargrave, D.; Holland, E.C.; Jones, D.T.W.; Joyce, J.A.; Kearns, P.; Kieran, M.W.; Mellinghoff, I.K.; Merchant, M.; Pfister, S.M.; Pollard, S.M.; Ramaswamy, V.; Rich, J.N.; Robinson, G.W.; Rowitch, D.H.; Sampson, J.H.; Taylor, M.D.; Workman, P.; Gilbertson, R.J. Challenges to curing primary brain tumours. Nat. Rev. Clin. Oncol., 2019, 16(8), 509-520.
[http://dx.doi.org/10.1038/s41571-019-0177-5] [PMID: 30733593]
[79]
Zietman, A.L.; Coen, J.J.; Dallow, K.C.; Shipley, W.U. The treatment of prostate cancer by conventional radiation therapy: an analysis of long-term outcome. Int. J. Radiat. Oncol. Biol. Phys., 1995, 32(2), 287-292.
[http://dx.doi.org/10.1016/0360-3016(95)00123-G]
[80]
Passmore, G.C. Overview of radiobiology. Principles and Practice of Radiation Therapy-E-Book, Washigton, C.M, Leaver, D.T; Eds.; Elsevier Health Sciences: . Amsterdam, 2015, p. 58.
[81]
Buerki, R.; Lapointe, S.; Solomon, D; Phillips, J.; Perry, A.; Villaneuva-Meyer, J.; Molinaro, A.; Bush, N. A. O.; Taylor, J.; Butowski, N. The genetic landscape of gliomas arising after therapeutic radiation. Acta Neuropathol., 2019, 137(1), 139-150.
[82]
Wen, P.Y.; Chang, S.M.; Lamborn, K.R.; Kuhn, J.G.; Norden, A.D.; Cloughesy, T.F.; Robins, H.I.; Lieberman, F.S.; Gilbert, M.R.; Mehta, M.P.; Drappatz, J.; Groves, M.D.; Santagata, S.; Ligon, A.H.; Yung, W.K.; Wright, J.J.; Dancey, J.; Aldape, K.D.; Prados, M.D.; Ligon, K.L. Phase I/II study of erlotinib and temsirolimus for patients with recurrent malignant gliomas: North American Brain Tumor Consortium trial 04-02. Neuro-oncol., 2014, 16(4), 567-578.
[http://dx.doi.org/10.1093/neuonc/not247] [PMID: 24470557]
[83]
Intensity Modulated Radiation Therapy Collaborative Working Group. Intensity-modulated radiotherapy: current status and issues of interest. Int. J. Radiat. Oncol. Biol. Phys., 2001, 51(4), 880-914.
[84]
Blomgren, H.; Lax, I.; Näslund, I.; Svanström, R. Stereotactic high dose fraction radiation therapy of extracranial tumors using an accelerator. Clinical experience of the first thirty-one patients. Acta Oncol., 1995, 34(6), 861-870.
[http://dx.doi.org/10.3109/02841869509127197] [PMID: 7576756]
[85]
Alexander, E., III; Moriarty, T.M.; Davis, R.B.; Wen, P.Y.; Fine, H.A.; Black, P.M.; Kooy, H.M.; Loeffler, J.S. Stereotactic radiosurgery for the definitive, noninvasive treatment of brain metastases. J. Natl. Cancer Inst., 1995, 87(1), 34-40.
[http://dx.doi.org/10.1093/jnci/87.1.34] [PMID: 7666461]
[86]
Barth, R.F.; Mi, P.; Yang, W. Boron delivery agents for neutron capture therapy of cancer. Cancer Commun (Lond), 2018, 38(1), 35.
[http://dx.doi.org/10.1186/s40880-018-0299-7]
[87]
Hu, M.; Jiang, L.; Cui, X.; Zhang, J.; Yu, J. Proton beam therapy for cancer in the era of precision medicine. J. Hematol. Oncol., 2018, 11(1), 136.
[http://dx.doi.org/10.1186/s13045-018-0683-4] [PMID: 30541578]
[88]
Dinesh Mayani, D. Proton therapy for cancer treatment. J. Oncol. Pharm. Pract., 2011, 17(3), 186-190.
[http://dx.doi.org/10.1177/1078155210375858] [PMID: 20634263]
[89]
Laquintana, V.; Trapani, A.; Denora, N.; Wang, F.; Gallo, J.M.; Trapani, G. New strategies to deliver anticancer drugs to brain tumors. Expert Opin. Drug Deliv., 2009, 6(10), 1017-1032.
[http://dx.doi.org/10.1517/17425240903167942] [PMID: 19732031]
[90]
Lakka, S.S.; Rao, J.S. Antiangiogenic therapy in brain tumors. Expert Rev. Neurother., 2008, 8(10), 1457-1473.
[http://dx.doi.org/10.1586/14737175.8.10.1457] [PMID: 18928341]
[91]
Verhoeff, J.J.C.; van Tellingen, O.; Claes, A.; Stalpers, L.J.A.; van Linde, M.E.; Richel, D.J.; Leenders, W.P.J.; van Furth, W.R. Concerns about anti-angiogenic treatment in patients with glioblastoma multiforme. BMC Cancer, 2009, 9, 444.
[http://dx.doi.org/10.1186/1471-2407-9-444] [PMID: 20015387]
[92]
Chen, A. PARP inhibitors: its role in treatment of cancer. Chin. J. Cancer, 2011, 30(7), 463-471.
[http://dx.doi.org/10.5732/cjc.011.10111] [PMID: 21718592]
[93]
Abounader, R.; Laterra, J. Scatter factor/hepatocyte growth factor in brain tumor growth and angiogenesis. Neuro-oncol., 2005, 7(4), 436-451.
[http://dx.doi.org/10.1215/S1152851705000050] [PMID: 16212809]
[94]
Roth, P.; Weller, M. Challenges to targeting epidermal growth factor receptor in glioblastoma: escape mechanisms and combinatorial treatment strategies. Neuro-oncol., 2014, 8(Suppl. 8), viii14-9
[http://dx.doi.org/10.1093/neuonc/nou222]
[95]
Kelly, W.J.; Shah, N.J.; Subramaniam, D.S. Management of brain metastases in epidermal growth factor receptor mutant non-small-cell lung cancer. Front. Oncol., 2018, 8, 208-208.
[http://dx.doi.org/10.3389/fonc.2018.00208] [PMID: 30018881]
[96]
Roed, H.; Vindeløv, L.L.; Christensen, I.J.; Spang-Thomsen, M.; Hansen, H.H. The cytotoxic activity of cisplatin, carboplatin and teniposide alone and combined determined on four human small cell lung cancer cell lines by the clonogenic assay. Eur. J. Cancer Clin. Oncol., 1988, 24(2), 247-253.
[http://dx.doi.org/10.1016/0277-5379(88)90261-1] [PMID: 2833402]
[97]
Oun, R.; Moussa, Y.E.; Wheate, N.J. The side effects of platinum-based chemotherapy drugs: a review for chemists. Dalton Trans., 2018, 47(19), 6645-6653.
[http://dx.doi.org/10.1039/C8DT00838H] [PMID: 29632935]
[98]
Lennard, L. Therapeutic drug monitoring of antimetabolic cytotoxic drugs. Br. J. Clin. Pharmacol., 1999, 47(2), 131-143.
[http://dx.doi.org/10.1046/j.1365-2125.1999.00884.x] [PMID: 10190647]
[99]
Xie, J.; Wang, X.; Proud, C. G. mTOR inhibitors in cancer therapy. F1000Res, 2016, 5(F1000 Faculty) Rev-2078
[100]
Vignot, S.; Faivre, S.; Aguirre, D.; Raymond, E. mTOR-targeted therapy of cancer with rapamycin derivatives. Ann. Oncol., 2005, 16(4), 525-537.
[http://dx.doi.org/10.1093/annonc/mdi113] [PMID: 15728109]
[101]
Reck, M.; von Pawel, J.; Macha, H-N.; Kaukel, E.; Deppermann, K-M.; Bonnet, R.; Ulm, K.; Hessler, S.; Gatzemeier, U. Randomized phase III trial of paclitaxel, etoposide, and carboplatin versus carboplatin, etoposide, and vincristine in patients with small-cell lung cancer. J. Natl. Cancer Inst., 2003, 95(15), 1118-1127.
[http://dx.doi.org/10.1093/jnci/djg017] [PMID: 12902441]
[102]
Cassileth, B.R.; Deng, G. Complementary and alternative therapies for cancer. Oncologist, 2004, 9(1), 80-89.
[http://dx.doi.org/10.1634/theoncologist.9-1-80] [PMID: 14755017]
[103]
Leake, R.; Broderick, J.E. Treatment efficacy of acupuncture: a review of the research literature. Integr. Med., 1998, 1, 107-115.
[http://dx.doi.org/10.1016/S1096-2190(98)00033-X]
[104]
Vickers, A.J.; Cassileth, B.R. Unconventional therapies for cancer and cancer-related symptoms. Lancet Oncol., 2001, 2(4), 226-232.
[http://dx.doi.org/10.1016/S1470-2045(00)00293-X] [PMID: 11905768]
[105]
Borek, C. Dietary antioxidants and human cancer. Integr. Cancer Ther., 2004, 3(4), 333-341.
[http://dx.doi.org/10.1177/1534735404270578] [PMID: 15523104]
[106]
Weitzman, S. Alternative nutritional cancer therapies. Int. J. Cancer Suppl., 1998, 11, 69-72.
[http://dx.doi.org/10.1002/(SICI)1097-0215(1998)78:11+<69:AID-IJC20>3.0.CO;2-7] [PMID: 9876483]
[107]
Elisia, I.; Nakamura, H.; Lam, V.; Hofs, E.; Cederberg, R.; Cait, J.; Hughes, M.R.; Lee, L.; Jia, W.; Adomat, H.H.; Guns, E.S.; McNagny, K.M.; Samudio, I.; Krystal, G. DMSO represses inflammatory cytokine production from human blood cells and reduces autoimmune arthritis. PLoS One, 2016, 11(3)e0152538
[http://dx.doi.org/10.1371/journal.pone.0152538] [PMID: 27031833]
[108]
Sanders, B.; Ray, A.M.; Goldberg, S.; Clark, T.; McDaniel, H.R.; Atlas, S.E.; Farooqi, A.; Konefal, J.; Lages, L.C.; Lopez, J.; Rasul, A.; Tiozzo, E.; Woolger, J.M.; Lewis, J.E. Anti-cancer effects of aloe-emodin: a systematic review. J. Clin. Transl. Res., 2017, 3(3), 283-296.
[PMID: 30895270]
[109]
Shalabi, M.; Khilo, K.; Zakaria, M.M.; Elsebaei, M.G.; Abdo, W.; Awadin, W. Anticancer activity of Aloe vera and Calligonum comosum extracts separetely on hepatocellular carcinoma cells. Asian Pac. J. Trop. Biomed., 2015, 5, 375-381.
[http://dx.doi.org/10.1016/S2221-1691(15)30372-5]
[110]
Peng, Z.; Han, X.; Li, S.; Al-Youbi, A.O.; Bashammakh, A.S.; El-Shahawi, M.S.; Leblanc, R.M. Carbon dots: biomacromolecule interaction, bioimaging and nanomedicine. Coord. Chem. Rev., 2017, 343, 256-277.
[http://dx.doi.org/10.1016/j.ccr.2017.06.001]
[111]
Zhang, J.; Yu, S-H. Carbon dots: large-scale synthesis, sensing and bioimaging. Mater. Today, 2016, 19, 382-393.
[http://dx.doi.org/10.1016/j.mattod.2015.11.008]
[112]
Sun, H.; Wu, L.; Gao, N.; Ren, J.; Qu, X. Improvement of photoluminescence of graphene quantum dots with a biocompatible photochemical reduction pathway and its bioimaging application. ACS Appl. Mater. Interfaces, 2013, 5(3), 1174-1179.
[http://dx.doi.org/10.1021/am3030849] [PMID: 23339586]
[113]
Tabish, T.; Zhang, S. Graphene Quantum Dots: Syntheses, Properties and Biological Applications; SigmaAldrich: St. Louis, 2016.
[114]
Roy, P.; Periasamy, A.P.; Lin, C-Y.; Her, G-M.; Chiu, W-J.; Li, C-L.; Shu, C-L.; Huang, C-C.; Liang, C-T.; Chang, H-T. Photoluminescent graphene quantum dots for in vivo imaging of apoptotic cells. Nanoscale, 2015, 7(6), 2504-2510.
[http://dx.doi.org/10.1039/C4NR07005D] [PMID: 25569453]
[115]
Wang, S.; Cole, I.S.; Li, Q. The toxicity of graphene quantum dots. RSC Advances, 2016, 6, 89867-89878.
[http://dx.doi.org/10.1039/C6RA16516H]
[116]
Kim, D.; Yoo, J.M.; Hwang, H.; Lee, J.; Lee, S.H.; Yun, S.P.; Park, M.J.; Lee, M.; Choi, S.; Kwon, S.H.; Lee, S.; Kwon, S.H.; Kim, S.; Park, Y.J.; Kinoshita, M.; Lee, Y.H.; Shin, S.; Paik, S.R.; Lee, S.J.; Lee, S.; Hong, B.H.; Ko, H.S. Graphene quantum dots prevent α-synucleinopathy in Parkinson’s disease. Nat. Nanotechnol., 2018, 13(9), 812-818.
[http://dx.doi.org/10.1038/s41565-018-0179-y] [PMID: 29988049]
[117]
Nasrollahi, F.; Koh, Y.R.; Chen, P.; Varshosaz, J.; Khodadadi, A.A.; Lim, S. Targeting graphene quantum dots to epidermal growth factor receptor for delivery of cisplatin and cellular imaging. Mater. Sci. Eng. C, 2019, 94, 247-257.
[http://dx.doi.org/10.1016/j.msec.2018.09.020] [PMID: 30423706]
[118]
Kenry, ; Loh, K.P.; Lim, C.T. Molecular interactions of graphene oxide with human blood plasma proteins. Nanoscale, 2016, 8(17), 9425-9441.
[http://dx.doi.org/10.1039/C6NR01697A] [PMID: 27094022]
[119]
Wang, X.; Sun, X.; Lao, J.; He, H.; Cheng, T.; Wang, M.; Wang, S.; Huang, F. Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery. Colloids Surf. B Biointerfaces, 2014, 122, 638-644.
[http://dx.doi.org/10.1016/j.colsurfb.2014.07.043] [PMID: 25129696]
[120]
Jia, F.; Lv, S.; Xu, S. Bio-conjugation of graphene quantum dots for targeting imaging. RSC Advances, 2017, 7, 53532-53536.
[http://dx.doi.org/10.1039/C7RA11963A]
[121]
Shen, J.; Shi, M.; Yan, B.; Ma, H.; Li, N.; Hu, Y.; Ye, M. Covalent attaching protein to graphene oxide via diimide-activated amidation. Colloids Surf. B Biointerfaces, 2010, 81(2), 434-438.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.035] [PMID: 20728319]
[122]
Shen, J.; Yan, B.; Shi, M.; Ma, H.; Li, N.; Ye, M. Synthesis of graphene oxide-based biocomposites through diimide-activated amidation. J. Colloid Interface Sci., 2011, 356(2), 543-549.
[http://dx.doi.org/10.1016/j.jcis.2011.01.052] [PMID: 21329939]
[123]
Zhang, Y.; Wu, C.; Guo, S.; Zhang, J. Interactions of graphene and graphene oxide with proteins and peptides. Nanotechnol. Rev., 2013, 2, 27-45.
[http://dx.doi.org/10.1515/ntrev-2012-0078]
[124]
Mondal, S.; Thirupathi, R.; Rao, L.P.; Atreya, H.S. Unraveling the dynamic nature of protein-graphene oxide interactions. RSC Advances, 2016, 6, 52539-52548.
[http://dx.doi.org/10.1039/C6RA03759C]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy