Generic placeholder image

Current Pharmaceutical Design

Eiditor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Survey of NMDA Receptor-related Biomarkers for Depression

Author(s): Yu-Ming Chen, Chieh-Hsin Lin* and Hsien-Yuan Lane*

Volume 26 , Issue 2 , 2020

Page: [228 - 235] Pages: 8

DOI: 10.2174/1381612826666200122155206

Price: $65

Abstract

Major depressive disorder (MDD) is an important cause of disability in the world. Depression has negative influences on a person’s mental and physical health, quality of life, and functioning. The pathophysiology of depression has not yet been confirmed. The traditional monoamine hypothesis of MDD could not explain the unsatisfactory treatment response of antidepressants. Thus, it is necessary to search other probable pathophysiology of MDD. In recent years, the role of glutamate neurotransmission in depression has drawn much attention. The N-methyl-D-aspartate receptor (NMDAR) is a subclass of glutamate receptors and is implicated in the pathogenesis of MDD and other mental disorders. Furthermore, NMDAR ligands, such as ketamine and Dcycloserine, have shown antidepressive effects in several studies. The diagnosis of MDD depends on physician’s subjective evaluation which is often inconsistent. Therefore, reliable objective laboratory biomarkers are essential for more accurate and consistent diagnosis of MDD. In this review, we firstly described the structure and regulation of the NMDAR. We then searched different genes involved in the pathway of glutamatergic neurotransmission and NMDAR, including D-amino acids, glycine, and glutamate. Various related enzymes and transporters that play a role in the modulation of NMDAR neurotransmission were also surveyed. This review aims to investigate NMDAR related metabolism, which may serve as feasible indicators for MDD and may contribute to further exploration of reliable biomarkers for MDD and promote new treatment of depression.

Keywords: Major depressive disorder, biomarker, N-methyl-D-aspartate receptor, glutamate, glycine, D-amino acids.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS AND DISCLOSURES

The sponsors were not involved in literature collection, writing and the decision to submit the article for publication.

REFERENCES

[1]
Weissman MM. The Changing rate of major depression. JAMA 1992; 268(21): 3098.
[http://dx.doi.org/10.1001/jama.1992.03490210080039]
[2]
Keller MB, Lavori PW, Mueller TI, et al. Time to recovery, chronicity, and levels of psychopathology in major depression. A 5-year prospective follow-up of 431 subjects. Arch Gen Psychiatry 1992; 49(10): 809-16.
[http://dx.doi.org/10.1001/archpsyc.1992.01820100053010] [PMID: 1417434]
[3]
Kupfer DJ, Frank E, Perel JM. The advantage of early treatment intervention in recurrent depression. Arch Gen Psychiatry 1989; 46(9): 771-5.
[http://dx.doi.org/10.1001/archpsyc.1989.01810090013002] [PMID: 2774846]
[4]
Lieblich SM, Castle DJ, Pantelis C, Hopwood M, Young AH, Everall IP. High heterogeneity and low reliability in the diagnosis of major depression will impair the development of new drugs. BJPsych 2015; 1(2): e5-7.
[http://dx.doi.org/10.1192/bjpo.bp.115.000786]
[5]
Smith KM, Renshaw PF, Bilello J. The diagnosis of depression: current and emerging methods. Compr Psychiatry 2013; 54(1): 1-6.
[http://dx.doi.org/10.1016/j.comppsych.2012.06.006]
[6]
Bilello JA, Thurmond LM, Smith KM, Rubin R, Wright SM, et al. MDDScore: confirmation of a blood test to aid in the diagnosis of major depressive disorder. J Clin Psychiatry 2015; 76(2): e199-206.
[7]
Mulinari S. Monoamine theories of depression: historical impact on biomedical research. J Hist Neurosci 2012; 21(4): 366-92.
[http://dx.doi.org/10.1080/0964704X.2011.623917] [PMID: 22947380]
[8]
Al-Harbi KS. Treatment-resistant depression: therapeutic trends, challenges, and future directions. Patient Prefer Adherence 2012; 6: 369-88.
[http://dx.doi.org/10.2147/PPA.S29716] [PMID: 22654508]
[9]
Sharif-Barfeh Z, Beigoli S, Marouzi S, Rad AS, Asoodeh A, Chamani J. Multi-spectroscopic and HPLC studies of the interaction between estradiol and cyclophosphamide with human serum albumin: binary and ternary systems. J Solution Chem 2017; 46(2): 488-504.
[http://dx.doi.org/10.1007/s10953-017-0590-2]
[10]
Kamshad M, Jahanshah Talab M, Beigoli S, Sharifirad A, Chamani J. Use of spectroscopic and zeta potential techniques to study the interaction between lysozyme and curcumin in the presence of silver nanoparticles at different sizes. J Biomol Struct Dyn 2019; 37(8): 2030-40.
[http://dx.doi.org/10.1080/07391102.2018.1475258] [PMID: 29757090]
[11]
Zolfagharzadeh M, Pirouzi M, Asoodeh A, Saberi MR, Chamani J. A comparison investigation of DNP-binding effects to HSA and HTF by spectroscopic and molecular modeling techniques. J Biomol Struct Dyn 2014; 32(12): 1936-52.
[http://dx.doi.org/10.1080/07391102.2013.843062] [PMID: 24125112]
[12]
Sanei H, Asoodeh A, Hamedakbari-Tusi S, Chamani J. Multi-spectroscopic investigations of aspirin and colchicine interactions with human hemoglobin: binary and ternary systems. J Solution Chem 2011; 40(11): 1905-31.
[http://dx.doi.org/10.1007/s10953-011-9766-3]
[13]
Mokaberi P, Reyhani V. New insights into the binding behavior of lomefloxacin and human hemoglobin using biophysical techniques: binary and ternary approaches. New J Chem 2019; 43(21): 8132-45.
[http://dx.doi.org/10.1039/C9NJ01048C]
[14]
Delgado PL. Depression: the case for a monoamine deficiency. J Clin Psychiatry 2000; 61(Suppl. 6): 7-11.
[15]
Krishnan V, Nestler EJ. The molecular neurobiology of depression. Nature 2008; 455(7215): 894-902.
[http://dx.doi.org/10.1038/nature07455]
[16]
Rogós Z, Skuza G, Daniel WA, Wójcikowski J, Dudek D, Wróbel A. Amantadine as an additive treatment in patients suffering from drug-resistant unipolar depression 2007. Available at:http://www.if-pan.krakow.pl/pjp/pdf/2007/6_778.pdf
[17]
Reiner A, Levitz J. Glutamatergic signaling in the central nervous system: ionotropic and metabotropic receptors in concert. Neuron 2018; 98(6): 1080-98.
[18]
Lin CH, Lane HY, Tsai GE. Glutamate signaling in the pathophysiology and therapy of schizophrenia. Pharmacol Biochem Behav 2012; 100(4): 665-77.
[http://dx.doi.org/10.1016/j.pbb.2011.03.023] [PMID: 21463651]
[19]
Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR, Charney DS, et al. Antidepressant effects of ketamine in depressed patients. Biol Psychiatry 2000; 47(4): 351-4.
[http://dx.doi.org/10.1016/S0006-3223(99)00230-9]
[20]
Kraus C, Wasserman D, Henter ID. The influence of ketamine on drug discovery in depression.In: drug discovery today. Elsevier 2019; 24: 2033-43.
[21]
Hashimoto K. Rapid-acting antidepressant ketamine, its metabolites and other candidates: a historical overview and future perspective.n: psychiatry and clinical neurosciences. Blackwell Pub 2019; 73: 613-27.
[22]
CRANEGE. Cyloserine as an antidepressant agent. Am J Psychiatry 1959; 115(11): 1025-6.
[23]
Papp M, Moryl E. Antidepressant-like effects of 1-aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 1996; 316(2-3): 145-51.
[24]
Amidfar M, Woelfer M, Réus GZ, Quevedo J, Walter M, Kim Y-K. The role of NMDA receptor in neurobiology and treatment of major depressive disorder: Evidence from translational research. Prog Neuropsychopharmacol Biol Psychiatry 2019; 94109668
[25]
Lin C-H, Lane H-Y. The Role of N-Methyl-D-Aspartate receptor neurotransmission and precision medicine in behavioral and psychological symptoms of dementia. Front Pharmacol 2019; 10: 540.
[http://dx.doi.org/10.3389/fphar.2019.00540] [PMID: 31191302]
[26]
Parsons MP, Raymond LA. Extrasynaptic NMDA receptor involvement in central nervous system disorders. Neuron 2014; 82(2): 279-93.
[http://dx.doi.org/10.1016/j.neuron.2014.03.030]
[27]
Hasler G, Drevets WC, Manji HK, Charney DS. Discovering Endophenotypes for major depression. Neuropsychopharmacology 2004; 29(10): 1765-81.
[http://dx.doi.org/10.1038/sj.npp.1300506]
[28]
Insel T, Cuthbert B, Garvey M, et al. Research domain criteria (RDoC): toward a new classification framework for research on mental disorders. Am J Psychiatry 2010; 167(7): 748-51.
[29]
Gadad BS, Jha MK, Czysz A, et al. Peripheral biomarkers of major depression and antidepressant treatment response: current knowledge and future outlooks. J Affect Disord 2018; 233: 3-14.
[30]
Gladkevich A, Kauffman HF, Korf J. Lymphocytes as a neural probe: potential for studying psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2004; 28(3): 559-76.
[http://dx.doi.org/10.1016/j.pnpbp.2004.01.009]
[31]
Sullivan PF, Fan C, Perou CM. Evaluating the comparability of gene expression in blood and brainAm J Med Genet Part B Neuropsychiatr Genet; 141B(3): 261-8
[http://dx.doi.org/10.1002/ajmg.b.30272]
[32]
Dang Y-H. MaX-C, ZhangJ-C , et al.Targeting of NMDA receptors in the treatment of major depression. Curr Pharm Des 2014; 20(32): 5151-9.
[33]
Hashimoto K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res Rev 2009; 61(2): 105-23.
[http://dx.doi.org/10.1016/j.brainresrev.2009.05.005]
[34]
Kim Y-K. NaK-S. Role of glutamate receptors and glial cells in the pathophysiology of treatment-resistant depression. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70: 117-26.
[35]
Lin C-H, Huang M-W, Lin C-H, Huang C-H, Lane H-Y. Altered mRNA expressions for N-methyl-D-aspartate receptor-related genes in WBC of patients with major depressive disorder. J Affect Disord 2019; 245: 1119-25.
[36]
Hashimoto K, Yoshida T, Ishikawa M, et al. Increased serum levels of serine enantiomers in patients with depression. Acta Neuropsychiatr 2016; 28(3): 173-8.
[http://dx.doi.org/10.1017/neu.2015.59]
[37]
Hardingham GE, Bading H. Synaptic versus extrasynaptic NMDA receptor signalling: implications for neurodegenerative disorders. Nat Rev Neurosci 2010; 11(10): 682-96.
[http://dx.doi.org/10.1038/nrn2911]
[38]
Feyissa AM, Chandran A, Stockmeier CA, Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Prog Neuropsychopharmacol Biol Psychiatry 2009; 33(1): 70-5.
[39]
Traynelis SF, Wollmuth LP, McBain CJ, et al. Glutamate receptor ion channels: structure, regulation, and function. Pharmacol Rev 2010; 62(3): 405-96.
[40]
Baez MV, Cercato MC, Jerusalinsky DA. NMDA receptor subunits change after synaptic plasticity induction and learning and memory acquisition. Neural Plast 2018; 2018: 1-11.
[http://dx.doi.org/10.1155/2018/5093048]
[41]
Kristiansen LV, Huerta I, Beneyto M, Meador-Woodruff JH. NMDA receptors and schizophrenia. Curr Opin Pharmacol 2007; 7(1): 48-55.
[http://dx.doi.org/10.1016/j.coph.2006.08.013] [PMID: 17097347]
[42]
Flores-Soto ME, Chaparro-Huerta V, Escoto-Delgadillo M, Vazquez-Valls E, González-Castañeda RE, Beas-Zarate C. Estructura y función de las subunidades del receptor a glutamato tipo NMDA. Neurologia 2012; 27(5): 301-10.
[43]
Furukawa H, Singh SK, Mancusso R, Gouaux E. Subunit arrangement and function in NMDA receptors. Nature 2005; 438(7065): 185-92.
[http://dx.doi.org/10.1038/nature04089]
[44]
Paoletti P, Neyton J. NMDA receptor subunits: function and pharmacology. Curr Opin Pharmacol 2007; 7(1): 39-47.
[http://dx.doi.org/10.1016/j.coph.2006.08.011] [PMID: 17088105]
[45]
Yao Y, Mayer ML. Characterization of a soluble ligand binding domain of the NMDA receptor regulatory subunit NR3A. J Neurosci 2006; 26(17): 4559-66.
[http://dx.doi.org/10.1523/JNEUROSCI.0560-06.2006] [PMID: 16641235]
[46]
Mayer ML, Westbrook GL, Guthrie PB. Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 1984; 309(5965): 261-3.
[47]
Dehghani Sani F, Shakibapour N, Beigoli S, Sadeghian H, Hosainzadeh M, Chamani J. Changes in binding affinity between ofloxacin and calf thymus DNA in the presence of histone H1: Spectroscopic and molecular modeling investigations. J Lumin 2018; 203: 599-608.
[http://dx.doi.org/10.1016/j.jlumin.2018.06.083]
[48]
Chamani J. Energetic domains analysis of bovine α-lactalbumin upon interaction with copper and dodecyl trimethylammonium bromide. J Mol Struct 2010; 979(1-3): 227-34.
[http://dx.doi.org/10.1016/j.molstruc.2010.06.035]
[49]
Johnson J. Kotermanskis. Mechanism of action of memantine. Curr Opin Pharmacol 2006; 6(1): 61-7.
[50]
Ciobanu LG, Sachdev PS, Trollor JN, et al. Differential gene expression in brain and peripheral tissues in depression across the life span: a review of replicated findings. Neurosci Biobehav Rev 2016; 71: 281-93.
[http://dx.doi.org/10.1016/j.neubiorev.2016.08.018]
[51]
Fadda E, Danysz W, Wroblewski JT, Costa E. Glycine and D-serine increase the affinity of N-methyl-D-aspartate sensitive glutamate binding sites in rat brain synaptic membranes. Neuropharmacology 1988; 27(11): 1183-5.
[52]
Wolosker H. D-Serine regulation of NMDA receptor activity. Sci STKE 2006; 2006(356)e41
[53]
Nong Y, Huang Y-Q. Ju W, Kalia LV, et al. Glycine binding primes NMDA receptor internalization. Nature 2003; 422(6929): 302-7.
[54]
Shleper M, Kartvelishvily E, Wolosker H. D-serine is the dominant endogenous coagonist for NMDA receptor neurotoxicity in organotypic hippocampal slices. J Neurosci 2005; 25(41): 9413-7.
[55]
MacKay M-AB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB. D-Serine: potential therapeutic agent and/or biomarker in schizophrenia and depression? Front Psychiatry 2019; 10.
[56]
Altamura C, Maes M, Dai J, Meltzer HY. Plasma concentrations of excitatory amino acids, serine, glycine, taurine and histidine in major depression. Eur Neuropsychopharmacol 1995; 5(Suppl.): 71-5.
[http://dx.doi.org/10.1016/0924-977X(95)00033-L]
[57]
Mitani H, Shirayama Y, Yamada T, Maeda K, Ashby CR, Kawahara R. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Eur Neuropsychopharmacol 1995; 5(Suppl.): 71-5.
[http://dx.doi.org/10.1016/j.pnpbp.2006.03.036]
[58]
Ishiwata S, Hattori K, Sasayama D, et al. Cerebrospinal fluid D -serine concentrations in major depressive disorder negatively correlate with depression severity. J Affect Disord 2018; 226: 155-62.
[59]
Levin R, Dor-Abarbanel AE, Edelman S, et al. Behavioral and cognitive effects of the N-methyl-d-aspartate receptor co-agonist d-serine in healthy humans: initial findings. J Psychiatr Res 2015; 61: 188-95.
[60]
Wang J, Zhang K, Chen X, et al. Epigenetic activation of ASCT2 in the hippocampus contributes to depression-like behavior by regulating D-Serine in mice. Front Mol Neurosci 2017; 10.
[61]
Wei I-H, Chen K-T, Tsai M-H. Wu C-H, LaneH-Y, Huang C-C. Acute amino acid d-serine administration, similar to ketamine, produces antidepressant-like effects through identical mechanisms. J Agric Food Chem 2017; 65(49): 10792-803.
[62]
Wolosker H, Blackshaw S, Snyder SH. Serine racemase: a glial enzyme synthesizing D-serine to regulate glutamate-N-methyl-D-aspartate neurotransmission. Proc Natl Acad Sci USA 1999; 96(23): 13409-14.
[63]
Hashimoto K, Fukushima T, Shimizu E, et al. Decreased serum levels of D-serine in patients with schizophrenia: evidence in support of the N-methyl-D-aspartate receptor hypofunction hypothesis of schizophrenia. Arch Gen Psychiatry 2003; 60(6): 572-6.
[64]
Otte D-M, Barcena de Arellano ML, Bilkei-Gorzo A, et al. Effects of chronic D-Serine elevation on animal models of depression and anxiety-related behavior. PLoS One 2013; 8(6)e67131
[65]
Billard J-M. Serine racemase as a prime target for age-related memory deficits. Eur J Neurosci 2013 Jun; 37(12): 1931-8.
[http://dx.doi.org/10.1111/ejn.12226]
[66]
Goldberg TE, Straub RE, Callicott JH, et al. The G72/G30 gene complex and cognitive abnormalities in schizophrenia. Neuropsychopharmacology 2006; 31(9): 2022-32.
[67]
Lin CH, Chen PK, Chang YC, et al. Benzoate, a D-amino acid oxidase inhibitor, for the treatment of early-phase alzheimer disease: a randomized, double-blind, placebo-controlled trial. Biol Psychiatry 2014; 75(9): 678-85.
[http://dx.doi.org/10.1016/j.biopsych.2013.08.010] [PMID: 24074637]
[68]
Lai C-H, Lane H-Y, Tsai GE. Clinical and cerebral volumetric effects of sodium benzoate, a d-amino acid oxidase inhibitor, in a drug-naïve patient with major depression. Biol Psychiatry 2012; 71(4): e9-e10.
[http://dx.doi.org/10.1016/j.biopsych.2011.10.034]
[69]
Zhao Z-X, Fu J, Ma S-R, et al. Gut-brain axis metabolic pathway regulates antidepressant efficacy of albiflorin. Theranostics 2018; 8(21): 5945-59.
[70]
Wake K, Yamazaki H, Hanzawa S, et al. Exaggerated responses to chronic nociceptive stimuli and enhancement of N-methyl-D-aspartate receptor-mediated synaptic transmission in mutant mice lacking D-amino-acid oxidase. Neurosci Lett 2001; 297(1): 25-8.
[71]
Rosenberg D, Artoul S, Segal AC, et al. Neuronal D-serine and glycine release Via the Asc-1 transporter regulates NMDA receptor-dependent synaptic activity. J Neurosci 2013; 33(8): 3533-44.
[72]
Yang CR, Svensson KA. Allosteric modulation of NMDA receptor via elevation of brain glycine and d-serine: the therapeutic potentials for schizophrenia. Pharmacol Ther 2008; 120(3): 317-32.
[73]
Sason H, Billard JM, Smith GP, et al. Asc-1 transporter regulation of synaptic activity via the tonic release of d-serine in the forebrain. Cereb Cortex 2017; 27(2): 1573-87.
[74]
Billard J-M, Freret T. Asc-1 transporter activation: an alternative to rescue age-related alterations in functional plasticity at rat hippocampal CA3/CA1 synapses. J Neurochem 2018; 147(4): 514-25.
[75]
Vargas-Lopes C, Madeira C, Kahn SA, et al. Protein kinase C activity regulates d-serine availability in the brain. J Neurochem 2011; 116(2): 281-90.
[76]
Hikida T, Mustafa AK, Maeda K, et al. Modulation of D-serine levels in brains of mice lacking PICK1. Biol Psychiatry 2008; 63(10): 997-1000.
[77]
Pizerli. The pathway and control of serine biosynthesis in escherichia coli. J Biol Chem 1963; 238: 3934-44.
[78]
Hart CE, Race V, Achouri Y, et al. Phosphoserine aminotransferase deficiency: a novel disorder of the serine biosynthesis pathway. Am J Hum Genet 2007; 80(5): 931-7.
[http://dx.doi.org/10.1086/517888]
[79]
Ozeki Y, Sekine M, Fujii K, et al. Phosphoserine phosphatase activity is elevated and correlates negatively with plasma d-serine concentration in patients with schizophrenia. Psychiatry Res 2016; 237: 344-50.
[http://dx.doi.org/10.1016/j.psychres.2016.01.010]
[80]
Sumiyoshi T, Anil AE, Jin D, Jayathilake K, Lee M, Meltzer HY. Plasma glycine and serine levels in schizophrenia compared to normal controls and major depression: relation to negative symptoms. Int J Neuropsychopharmacol 2004; 7(1): 1-8.
[http://dx.doi.org/10.1017/S1461145703003900]
[81]
Lu Y-R, Fu X-Y, Shi L-G, et al. Decreased plasma neuroactive amino acids and increased nitric oxide levels in melancholic major depressive disorder. BMC Psychiatry 2014; 14(1): 123.
[82]
Henter ID. deSousaRT, ZarateCA. Glutamatergic modulators in depression. Harv Rev Psychiatry 2018; 1.
[83]
Lane HY, Huang CL, Wu PL, et al. Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 2006; 60(6): 645-9.
[http://dx.doi.org/10.1016/j.biopsych.2006.04.005] [PMID: 16780811]
[84]
Strzelecki D, Kropiwnicki P, Rabe-Jabłońska J. [Augmentation of antipsychotics with glycine may ameliorate depressive and extrapyramidal symptoms in schizophrenic patients-a preliminary 10-week open-label study].Psychiatr Pol 2013; 47(4): 609-20.
[85]
Wallace TL, Ballard TM, Pouzet B, Riedel WJ, Wettstein JG. Drug targets for cognitive enhancement in neuropsychiatric disorders. Pharmacol Biochem Behav 2011; 99(2): 130-45.
[http://dx.doi.org/10.1016/j.pbb.2011.03.022]
[86]
Heresco-LU, Javitt DC, Ermilov M, Mordel C, Silipo G, Lichtenstein M. Efficacy of high-dose glycine in the treatment of enduring negative symptoms of schizophrenia. Arch Gen Psychiatry 1999; 56(1): 29-36.
[87]
Cossins EA, Chan PY, Combepine G. One-carbon metabolism in Neurospora crassa wild-type and in mutants partially deficient in serine hydroxymethyltransferase Biochem J 1976 2019; 160(2): 305-14
[http://dx.doi.org/10.1042/bj1600305]
[88]
Waziri R, Mott J, Wilcox J. Differentiation of psychotic from nonpsychotic depression by a biological marker. J Affect Disord 1985; 9(2): 175-80.
[89]
Waziri R, Mott J. Drug effects on serine metabolism in psychiatric patients. Psychiatry Res 1986; 18(2): 119-26.
[http://dx.doi.org/10.1016/0165-1781(86)90024-7]
[90]
Mohammad NS, Jain JMN, Chintakindi KP, Singh RP, Naik U, Akella RRD. Aberrations in folate metabolic pathway and altered susceptibility to autism. Psychiatr Genet 2009; 19(4): 171-6.
[91]
McGilvray D, Morris JG. Utilization of L-threonine by a species of arthrobacter. A novel catabolic role for “aminoacetone synthase”. Biochem J 1969; 112(5): 657-71.
[92]
Eulenburg V, Armsen W, Betz H, Gomeza J. Glycine transporters: essential regulators of neurotransmission. Trends Biochem Sci 2005 Jun; 30(6): 325-33.
[http://dx.doi.org/10.1016/j.tibs.2005.04.004]
[93]
Harsing LG, Zsilla G, Matyus P, et al. Interactions between glycine transporter type 1 (GlyT-1) and some inhibitor molecules - glycine transporter type 1 and its inhibitors. (review) Acta Physiol Hung 2012; 99(1): 1-17.
[94]
Chen L, Muhlhauser M, Yang CR. Glycine tranporter-1 blockade potentiates NMDA-mediated responses in rat prefrontal cortical neurons in vitro and in vivo. J Neurophysiol 2003; 89(2): 691-703.
[95]
Tsai G, Ralph-Williams RJ, Martina M, et al. Gene knockout of glycine transporter 1: characterization of the behavioral phenotype. Proc Natl Acad Sci 2004; 101(22): 8485-90.
[96]
López-Corcuera B, Martínez-Maza R, Núñez E, Roux M, Supplisson S, Aragón C. Differential properties of two stably expressed brain-specific glycine transporters. J Neurochem 1998 2019; 71(5): 2211-9.
[97]
Zhang HX, Hyrc K, Thio LL. The glycine transport inhibitor sarcosine is an NMDA receptor co-agonist that differs from glycine. J Physiol 2009; 587(13): 3207-20.
[98]
Huang CC, Wei IH, Huang CL, et al. Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry 2013; 74(10): 734-41.
[http://dx.doi.org/10.1016/j.biopsych.2013.02.020] [PMID: 23562005]
[99]
Huang Y-J, Lane H-Y, Lin C-H. New treatment strategies of depression: based on mechanisms related to neuroplasticity. Neural Plast 2017; 20174605971
[http://dx.doi.org/10.1155/2017/4605971] [PMID: 28491480]
[100]
Pittenger C, Duman RS. Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 2008; 33(1): 88-109.
[101]
Racagni G, Popoli M. Cellular and molecular mechanisms in the long-term action of antidepressants. Dialogues Clin Neurosci 2008; 10(4): 385-400.
[102]
Sanacora G, Zarate CA, Krystal JH, Manji HK. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nat Rev Drug Discov 2008; 7(5): 426-37.
[http://dx.doi.org/10.1038/nrd2462]
[103]
Pessoa L. On the relationship between emotion and cognition. Nat Rev Neurosci 2008; 9(2): 148-58.
[http://dx.doi.org/10.1038/nrn2317]
[104]
Altamura CA, Mauri MC, Ferrara A, Moro AR. D’AndreaG, ZamberlanF. Plasma and platelet excitatory amino acids in psychiatric disorders. Am J Psychiatry 1993; 150(11): 1731-3.
[105]
Auer DP, Pütz B, Kraft E, Lipinski B, Schill J, Holsboer F. Reduced glutamate in the anterior cingulate cortex in depression: an in vivo proton magnetic resonance spectroscopy study. Biol Psychiatry 2000; 47(4): 305-13.
[http://dx.doi.org/10.1016/S0006-3223(99)00159-6]
[106]
Hasler G, van derVeen JW, Tumonis T, Meyers N, Shen J, Drevets WC. Reduced prefrontal glutamate/glutamine and γ-aminobutyric acid levels in major depression determined using proton magnetic resonance spectroscopy. Arch Gen Psychiatry 2007; 64(2): 193.
[107]
Kim JS, Schmid-Burgk W, Claus D, Kornhuber HH. Increased serum glutamate in depressed patients. Arch Psychiatr Nervenkr 1982; 232(4): 299-304.
[108]
Levine ES, Kolb JE. Brain-derived neurotrophic factor increases activity of NR2B-containing N-methyl-D-aspartate receptors in excised patches from hippocampal neurons. J Neurosci Res 2000; 62(3): 357-62.
[109]
Mauri MC, Ferrara A, Boscati L, et al. Plasma and platelet amino acid concentrations in patients affected by major depression and under fluvoxamine treatment. Neuropsychobiology 1998; 37(3): 124-9.
[http://dx.doi.org/10.1159/000026491]
[110]
Sanacora G, Gueorguieva R, Epperson CN, et al. Subtype-specific alterations of gamma-aminobutyric acid and glutamate in patients with major depression. Arch Gen Psychiatry 2004; 61(7): 705-13.
[111]
Garay R, Zarate CA, Cavero I, Kim Y-K, Charpeaud T, Skolnick P. The development of glutamate-based antidepressants is taking longer than expected. Drug Discov Today 2019; 23(10): 1689-92.
[http://dx.doi.org/10.1016/j.drudis.2018.02.006]
[112]
Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression. Neuropharmacology 2012; 62(1): 63-77.
[http://dx.doi.org/10.1016/j.neuropharm.2011.07.036]
[113]
Alcaro A, Panksepp J, Witczak J, Hayes DJ, Northoff G. Is subcortical-cortical midline activity in depression mediated by glutamate and GABA? A cross-species translational approach. Neurosci Biobehav Rev 2010; 34(4): 592-605.
[114]
Sequeira A, Mamdani F, Ernst C, et al. Global brain gene expression analysis links glutamatergic and GABAergic alterations to suicide and major depression. PLoS One 2009; 4(8)e6585
[http://dx.doi.org/10.1371/journal.pone.0006585]
[115]
Tordera RM, Garcia-García AL, Elizalde N, et al. Chronic stress and impaired glutamate function elicit a depressive-like phenotype and common changes in gene expression in the mouse frontal cortex. Eur Neuropsychopharmacol 2011; 21(1): 23-32.
[116]
Davidson RJ, Putnam KM, Larson CL. Dysfunction in the neural circuitry of emotion regulation-a possible prelude to violence. Science 2000; 289(5479): 591-4.
[117]
Koenigs M, Grafman J. The functional neuroanatomy of depression: distinct roles for ventromedial and dorsolateral prefrontal cortex. Behav Brain Res 2009; 201(2): 239-43.
[118]
Rogers MA, Kasai K, Koji M, et al. Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res 2004; 50(1): 1-11.
[http://dx.doi.org/10.1016/j.neures.2004.05.003]
[119]
Karolewicz B, Maciag D. O’DwyerG, StockmeierCA, FeyissaAM, RajkowskaG. Reduced level of glutamic acid decarboxylase-67 kDa in the prefrontal cortex in major depression. Int J Neuropsychopharmacol [Internet]. 2010 May 15 [cited 2019 Jul 14];13(4):411– 20. Available from: https://academic.oup.com/ijnp/article-lookup/doi/10.1017/S1461145709990587
[120]
Varea E, Guirado R, Gilabert-Juan J, et al. Expression of PSA-NCAM and synaptic proteins in the amygdala of psychiatric disorder patients. J Psychiatr Res 2012; 46(2): 189-97.
[121]
Hettema JM, An SS, Neale MC, et al. Association between glutamic acid decarboxylase genes and anxiety disorders, major depression, and neuroticism. Mol Psychiatry 2006; 11(8): 752-62.
[122]
Choi K-D, Jen JC, Choi SY, et al. Late-onset episodic ataxia associated with SLC1A3 mutation. J Hum Genet 2017; 62(3): 443-6.
[123]
Matsugami TR, Tanemura K, Mieda M, et al. From the cover: indispensability of the glutamate transporters GLAST and GLT1 to brain development. Proc Natl Acad Sci USA 2006; 103(32): 12161-6.
[124]
Choudary PV, Molnar M, Evans SJ, et al. Altered cortical glutamatergic and GABAergic signal transmission with glial involvement in depression. Proc Natl Acad Sci USA 2005; 102(43): 15653-8.
[125]
Popoli M, Yan Z, McEwen BS, Sanacora G. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 2012; 13(1): 2237.
[126]
Oh DH, Son H, Hwang S, Kim SH. Neuropathological abnormalities of astrocytes, GABAergic neurons, and pyramidal neurons in the dorsolateral prefrontal cortices of patients with major depressive disorder. Eur Neuropsychopharmacol 2012; 22(5): 330-8.
[127]
Sibille E, Morris HM, Kota RS, Lewis DA. GABA-related transcripts in the dorsolateral prefrontal cortex in mood disorders. Int J Neuropsychopharmacol 2011; 14(6): 721-34.
[128]
Yu HN, Park WK, Nam KH, et al. Neuregulin 1 controls glutamate uptake by up-regulating excitatory amino acid carrier 1 (EAAC1). J Biol Chem 2015; 290(33): 20233-44.
[http://dx.doi.org/10.1074/jbc.M114.591867] [PMID: 26092725]
[129]
Dean B, Karl T, Pavey G, Boer S, Duffy L, Scarr E. Increased levels of serotonin 2A receptors and serotonin transporter in the CNS of neuregulin 1 hypomorphic/mutant mice. Schizophr Res 2008; 99(1-3): 341-9.
[130]
Wen Z, Chen J, Song Z, et al. Genetic association between NRG1 and schizophrenia, major depressive disorder, bipolar disorder in Han Chinese population. Am J Med Genet B Neuropsychiatr Genet 2016; 171B(3): 468-78.
[131]
Bousman CA, Potiriadis M, Everall IP, Gunn JM. Effects of neuregulin-1 genetic variation and depression symptom severity on longitudinal patterns of psychotic symptoms in primary care attendees. Am J Med Genet B Neuropsychiatr Genet 2014; 165B(1): 62-7.
[http://dx.doi.org/10.1002/ajmg.b.32206]
[132]
Gururajan A, Clarke G, Dinan TG, Cryan JF. Molecular biomarkers of depression. Neurosci Biobehav Rev 2016; 64: 101-33.
[http://dx.doi.org/10.1016/j.neubiorev.2016.02.011]
[133]
Jentsch MC, VanBuel EM, Bosker FJ, et al. Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomarkers Med 2015; 9(3): 277-97.
[134]
Chan SY, Matthews E, Burnet PWJ. ON or OFF?: Modulating the N-Methyl-D-Aspartate receptor in major depression. Front Mol Neurosci 2017; 9: 169.
[http://dx.doi.org/10.3389/fnmol.2016.00169] [PMID: 28133445]
[135]
Peyrovian B, Rosenblat JD, Pan Z, Iacobucci M, Brietzke E, McIntyre RS. The glycine site of NMDA receptors: a target for cognitive enhancement in psychiatric disorders. Prog Neuropsychopharmacol Biol Psychiatry 2019; 92: 387-404.
[http://dx.doi.org/10.1016/j.pnpbp.2019.02.001] [PMID: 30738126]
[136]
Stahl SM. dextromethorphan/bupropion: a novel oral NMDA (N-methyl-d-aspartate) receptor antagonist with multimodal activity. CNS Spectr 2019; 24(5): 461-6.

Rights & Permissions Print Export Cite as
© 2020 Bentham Science Publishers | Privacy Policy