Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Review Article

Mechanisms and Characteristics of Sulfonylureas and Glinides

Author(s): Wei Lv, Xianqing Wang, Qian Xu and Wencong Lu*

Volume 20, Issue 1, 2020

Page: [37 - 56] Pages: 20

DOI: 10.2174/1568026620666191224141617

Price: $65

Abstract

Background: Type 2 diabetes mellitus is a complex progressive endocrine disease characterized by hyperglycemia and life-threatening complications. It is the most common disorder of pancreatic cell function that causes insulin deficiency. Sulfonylurea is a class of oral hypoglycemic drugs. Over the past half century, these drugs, together with the subsequent non-sulfonylureas (glinides), have been the main oral drugs for insulin secretion.

Objective: Through in-depth study, the medical profession considers it as an important drug for improving blood sugar control.

Methods: The mechanism, characteristics, efficacy and side effects of sulfonylureas and glinides were reviewed in detail.

Results: Sulfonylureas and glinides not only stimulated the release of insulin from pancreatic cells, but also had many extrapanular hypoglycemic effect, such as reducing the clearance rate of insulin in liver, reducing the secretion of glucagon, and enhancing the sensitivity of peripheral tissues to insulin in type 2 diabetes mellitus.

Conclusion: Sulfonylureas and glinides are effective first-line drugs for the treatment of diabetes mellitus. Although they have the risk of hypoglycemia, weight gain and cardiovascular disease, their clinical practicability and safety can be guaranteed as long as they are reasonably used.

Keywords: Type 2 diabetes, Sulfonylurea, Glinide, Pancreatic cells, Insulin, Secretion, Safety, Side effects.

Graphical Abstract
[1]
American Diabetes Association. Standards of medical care in diabetes--2014. Diabetes Care, 2014, 37(Suppl. 1), S14-S80.
[http://dx.doi.org/10.2337/dc14-S014] [PMID: 24357209]
[2]
Mathers, C.D.; Loncar, D. Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med., 2006, 3(11)e442
[http://dx.doi.org/10.1371/journal.pmed.0030442] [PMID: 17132052]
[3]
Forouzanfar, M.H.; Alexander, L.; Anderson, H.R.; Bachman, V.F.; Biryukov, S.; Brauer, M.; Burnett, R.; Casey, D.; Coates, M.M.; Cohen, A.; Delwiche, K.; Estep, K.; Frostad, J.J.; Astha, K.C.; Kyu, H.H.; Moradi-Lakeh, M.; Ng, M.; Slepak, E.L.; Thomas, B.A.; Wagner, J.; Aasvang, G.M.; Abbafati, C.; Abbasoglu Ozgoren, A.; Abd-Allah, F.; Abera, S.F.; Aboyans, V.; Abraham, B.; Abraham, J.P.; Abubakar, I.; Abu-Rmeileh, N.M.; Aburto, T.C.; Achoki, T.; Adelekan, A.; Adofo, K.; Adou, A.K.; Adsuar, J.C.; Afshin, A.; Agardh, E.E.; Al Khabouri, M.J.; Al Lami, F.H.; Alam, S.S.; Alasfoor, D.; Albittar, M.I.; Alegretti, M.A.; Aleman, A.V.; Alemu, Z.A.; Alfonso-Cristancho, R.; Alhabib, S.; Ali, R.; Ali, M.K.; Alla, F.; Allebeck, P.; Allen, P.J.; Alsharif, U.; Alvarez, E.; Alvis-Guzman, N.; Amankwaa, A.A.; Amare, A.T.; Ameh, E.A.; Ameli, O.; Amini, H.; Ammar, W.; Anderson, B.O.; Antonio, C.A.; Anwari, P.; Argeseanu Cunningham, S.; Arnlöv, J.; Arsenijevic, V.S.; Artaman, A.; Asghar, R.J.; Assadi, R.; Atkins, L.S.; Atkinson, C.; Avila, M.A.; Awuah, B.; Badawi, A.; Bahit, M.C.; Bakfalouni, T.; Balakrishnan, K.; Balalla, S.; Balu, R.K.; Banerjee, A.; Barber, R.M.; Barker-Collo, S.L.; Barquera, S.; Barregard, L.; Barrero, L.H.; Barrientos-Gutierrez, T.; Basto-Abreu, A.C.; Basu, A.; Basu, S.; Basulaiman, M.O.; Batis Ruvalcaba, C.; Beardsley, J.; Bedi, N.; Bekele, T.; Bell, M.L.; Benjet, C.; Bennett, D.A.; Benzian, H.; Bernabé, E.; Beyene, T.J.; Bhala, N.; Bhalla, A.; Bhutta, Z.A.; Bikbov, B.; Bin Abdulhak, A.A.; Blore, J.D.; Blyth, F.M.; Bohensky, M.A.; Bora Başara, B.; Borges, G.; Bornstein, N.M.; Bose, D.; Boufous, S.; Bourne, R.R.; Brainin, M.; Brazinova, A.; Breitborde, N.J.; Brenner, H.; Briggs, A.D.; Broday, D.M.; Brooks, P.M.; Bruce, N.G.; Brugha, T.S.; Brunekreef, B.; Buchbinder, R.; Bui, L.N.; Bukhman, G.; Bulloch, A.G.; Burch, M.; Burney, P.G.; Campos-Nonato, I.R.; Campuzano, J.C.; Cantoral, A.J.; Caravanos, J.; Cárdenas, R.; Cardis, E.; Carpenter, D.O.; Caso, V.; Castañeda-Orjuela, C.A.; Castro, R.E.; Catalá-López, F.; Cavalleri, F.; Çavlin, A.; Chadha, V.K.; Chang, J.C.; Charlson, F.J.; Chen, H.; Chen, W.; Chen, Z.; Chiang, P.P.; Chimed-Ochir, O.; Chowdhury, R.; Christophi, C.A.; Chuang, T.W.; Chugh, S.S.; Cirillo, M.; Claßen, T.K.; Colistro, V.; Colomar, M.; Colquhoun, S.M.; Contreras, A.G.; Cooper, C.; Cooperrider, K.; Cooper, L.T.; Coresh, J.; Courville, K.J.; Criqui, M.H.; Cuevas-Nasu, L.; Damsere-Derry, J.; Danawi, H.; Dandona, L.; Dandona, R.; Dargan, P.I.; Davis, A.; Davitoiu, D.V.; Dayama, A.; de Castro, E.F.; De la Cruz-Góngora, V.; De Leo, D.; de Lima, G.; Degenhardt, L.; del Pozo-Cruz, B.; Dellavalle, R.P.; Deribe, K.; Derrett, S.; Des Jarlais, D.C.; Dessalegn, M.; deVeber, G.A.; Devries, K.M.; Dharmaratne, S.D.; Dherani, M.K.; Dicker, D.; Ding, E.L.; Dokova, K.; Dorsey, E.R.; Driscoll, T.R.; Duan, L.; Durrani, A.M.; Ebel, B.E.; Ellenbogen, R.G.; Elshrek, Y.M.; Endres, M.; Ermakov, S.P.; Erskine, H.E.; Eshrati, B.; Esteghamati, A.; Fahimi, S.; Faraon, E.J.; Farzadfar, F.; Fay, D.F.; Feigin, V.L.; Feigl, A.B.; Fereshtehnejad, S.M.; Ferrari, A.J.; Ferri, C.P.; Flaxman, A.D.; Fleming, T.D.; Foigt, N.; Foreman, K.J.; Paleo, U.F.; Franklin, R.C.; Gabbe, B.; Gaffikin, L.; Gakidou, E.; Gamkrelidze, A.; Gankpé, F.G.; Gansevoort, R.T.; García-Guerra, F.A.; Gasana, E.; Geleijnse, J.M.; Gessner, B.D.; Gething, P.; Gibney, K.B.; Gillum, R.F.; Ginawi, I.A.; Giroud, M.; Giussani, G.; Goenka, S.; Goginashvili, K.; Gomez Dantes, H.; Gona, P.; Gonzalez de Cosio, T.; González-Castell, D.; Gotay, C.C.; Goto, A.; Gouda, H.N.; Guerrant, R.L.; Gugnani, H.C.; Guillemin, F.; Gunnell, D.; Gupta, R.; Gupta, R.; Gutiérrez, R.A.; Hafezi-Nejad, N.; Hagan, H.; Hagstromer, M.; Halasa, Y.A.; Hamadeh, R.R.; Hammami, M.; Hankey, G.J.; Hao, Y.; Harb, H.L.; Haregu, T.N.; Haro, J.M.; Havmoeller, R.; Hay, S.I.; Hedayati, M.T.; Heredia-Pi, I.B.; Hernandez, L.; Heuton, K.R.; Heydarpour, P.; Hijar, M.; Hoek, H.W.; Hoffman, H.J.; Hornberger, J.C.; Hosgood, H.D.; Hoy, D.G.; Hsairi, M.; Hu, G.; Hu, H.; Huang, C.; Huang, J.J.; Hubbell, B.J.; Huiart, L.; Husseini, A.; Iannarone, M.L.; Iburg, K.M.; Idrisov, B.T.; Ikeda, N.; Innos, K.; Inoue, M.; Islami, F.; Ismayilova, S.; Jacobsen, K.H.; Jansen, H.A.; Jarvis, D.L.; Jassal, S.K.; Jauregui, A.; Jayaraman, S.; Jeemon, P.; Jensen, P.N.; Jha, V.; Jiang, F.; Jiang, G.; Jiang, Y.; Jonas, J.B.; Juel, K.; Kan, H.; Kany Roseline, S.S.; Karam, N.E.; Karch, A.; Karema, C.K.; Karthikeyan, G.; Kaul, A.; Kawakami, N.; Kazi, D.S.; Kemp, A.H.; Kengne, A.P.; Keren, A.; Khader, Y.S.; Khalifa, S.E.; Khan, E.A.; Khang, Y.H.; Khatibzadeh, S.; Khonelidze, I.; Kieling, C.; Kim, D.; Kim, S.; Kim, Y.; Kimokoti, R.W.; Kinfu, Y.; Kinge, J.M.; Kissela, B.M.; Kivipelto, M.; Knibbs, L.D.; Knudsen, A.K.; Kokubo, Y.; Kose, M.R.; Kosen, S.; Kraemer, A.; Kravchenko, M.; Krishnaswami, S.; Kromhout, H.; Ku, T.; Kuate , Defo B.; Kucuk Bicer, B.; Kuipers, E.J.; Kulkarni, C.; Kulkarni, V.S.; Kumar, G.A.; Kwan, G.F.; Lai, T.; Lakshmana Balaji, A.; Lalloo, R.; Lallukka, T.; Lam, H.; Lan, Q.; Lansingh, V.C.; Larson, H.J.; Larsson, A.; Laryea, D.O.; Lavados, P.M.; Lawrynowicz, A.E.; Leasher, J.L.; Lee, J.T.; Leigh, J.; Leung, R.; Levi, M.; Li, Y.; Li, Y.; Liang, J.; Liang, X.; Lim, S.S.; Lindsay, M.P.; Lipshultz, S.E.; Liu, S.; Liu, Y.; Lloyd, B.K.; Logroscino, G.; London, S.J.; Lopez, N.; Lortet-Tieulent, J.; Lotufo, P.A.; Lozano, R.; Lunevicius, R.; Ma, J.; Ma, S.; Machado, V.M.; MacIntyre, M.F.; Magis-Rodriguez, C.; Mahdi, A.A.; Majdan, M.; Malekzadeh, R.; Mangalam, S.; Mapoma, C.C.; Marape, M.; Marcenes, W.; Margolis, D.J.; Margono, C.; Marks, G.B.; Martin, R.V.; Marzan, M.B.; Mashal, M.T.; Masiye, F.; Mason-Jones, A.J.; Matsushita, K.; Matzopoulos, R.; Mayosi, B.M.; Mazorodze, T.T.; McKay, A.C.; McKee, M.; McLain, A.; Meaney, P.A.; Medina, C.; Mehndiratta, M.M.; Mejia-Rodriguez, F.; Mekonnen, W.; Melaku, Y.A.; Meltzer, M.; Memish, Z.A.; Mendoza, W.; Mensah, G.A.; Meretoja, A.; Mhimbira, F.A.; Micha, R.; Miller, T.R.; Mills, E.J.; Misganaw, A.; Mishra, S.; Mohamed Ibrahim, N.; Mohammad, K.A.; Mokdad, A.H.; Mola, G.L.; Monasta, L.; Montañez Hernandez, J.C.; Montico, M.; Moore, A.R.; Morawska, L.; Mori, R.; Moschandreas, J.; Moturi, W.N.; Mozaffarian, D.; Mueller, U.O.; Mukaigawara, M.; Mullany, E.C.; Murthy, K.S.; Naghavi, M.; Nahas, Z.; Naheed, A.; Naidoo, K.S.; Naldi, L.; Nand, D.; Nangia, V.; Narayan, K.M.; Nash, D.; Neal, B.; Nejjari, C.; Neupane, S.P.; Newton, C.R.; Ngalesoni, F.N.; Ngirabega, Jde.D.; Nguyen, G.; Nguyen, N.T.; Nieuwenhuijsen, M.J.; Nisar, M.I.; Nogueira, J.R.; Nolla, J.M.; Nolte, S.; Norheim, O.F.; Norman, R.E.; Norrving, B.; Nyakarahuka, L.; Oh, I.H.; Ohkubo, T.; Olusanya, B.O.; Omer, S.B.; Opio, J.N.; Orozco, R.; Pagcatipunan, R.S., Jr; Pain, A.W.; Pandian, J.D.; Panelo, C.I.; Papachristou, C.; Park, E.K.; Parry, C.D.; Paternina Caicedo, A.J.; Patten, S.B.; Paul, V.K.; Pavlin, B.I.; Pearce, N.; Pedraza, L.S.; Pedroza, A.; Pejin Stokic, L.; Pekericli, A.; Pereira, D.M.; Perez-Padilla, R.; Perez-Ruiz, F.; Perico, N.; Perry, S.A.; Pervaiz, A.; Pesudovs, K.; Peterson, C.B.; Petzold, M.; Phillips, M.R.; Phua, H.P.; Plass, D.; Poenaru, D.; Polanczyk, G.V.; Polinder, S.; Pond, C.D.; Pope, C.A.; Pope, D.; Popova, S.; Pourmalek, F.; Powles, J.; Prabhakaran, D.; Prasad, N.M.; Qato, D.M.; Quezada, A.D.; Quistberg, D.A.; Racapé, L.; Rafay, A.; Rahimi, K.; Rahimi-Movaghar, V.; Rahman, S.U.; Raju, M.; Rakovac, I.; Rana, S.M.; Rao, M.; Razavi, H.; Reddy, K.S.; Refaat, A.H.; Rehm, J.; Remuzzi, G.; Ribeiro, A.L.; Riccio, P.M.; Richardson, L.; Riederer, A.; Robinson, M.; Roca, A.; Rodriguez, A.; Rojas-Rueda, D.; Romieu, I.; Ronfani, L.; Room, R.; Roy, N.; Ruhago, G.M.; Rushton, L.; Sabin, N.; Sacco, R.L.; Saha, S.; Sahathevan, R.; Sahraian, M.A.; Salomon, J.A.; Salvo, D.; Sampson, U.K.; Sanabria, J.R.; Sanchez, L.M.; Sánchez-Pimienta, T.G.; Sanchez-Riera, L.; Sandar, L.; Santos, I.S.; Sapkota, A.; Satpathy, M.; Saunders, J.E.; Sawhney, M.; Saylan, M.I.; Scarborough, P.; Schmidt, J.C.; Schneider, I.J.; Schöttker, B.; Schwebel, D.C.; Scott, J.G.; Seedat, S.; Sepanlou, S.G.; Serdar, B.; Servan-Mori, E.E.; Shaddick, G.; Shahraz, S.; Levy, T.S.; Shangguan, S.; She, J.; Sheikhbahaei, S.; Shibuya, K.; Shin, H.H.; Shinohara, Y.; Shiri, R.; Shishani, K.; Shiue, I.; Sigfusdottir, I.D.; Silberberg, D.H.; Simard, E.P.; Sindi, S.; Singh, A.; Singh, G.M.; Singh, J.A.; Skirbekk, V.; Sliwa, K.; Soljak, M.; Soneji, S.; Søreide, K.; Soshnikov, S.; Sposato, L.A.; Sreeramareddy, C.T.; Stapelberg, N.J.; Stathopoulou, V.; Steckling, N.; Stein, D.J.; Stein, M.B.; Stephens, N.; Stöckl, H.; Straif, K.; Stroumpoulis, K.; Sturua, L.; Sunguya, B.F.; Swaminathan, S.; Swaroop, M.; Sykes, B.L.; Tabb, K.M.; Takahashi, K.; Talongwa, R.T.; Tandon, N.; Tanne, D.; Tanner, M.; Tavakkoli, M.; Te Ao, B.J.; Teixeira, C.M.; Téllez Rojo, M.M.; Terkawi, A.S.; Texcalac-Sangrador, J.L.; Thackway, S.V.; Thomson, B.; Thorne-Lyman, A.L.; Thrift, A.G.; Thurston, G.D.; Tillmann, T.; Tobollik, M.; Tonelli, M.; Topouzis, F.; Towbin, J.A.; Toyoshima, H.; Traebert, J.; Tran, B.X.; Trasande, L.; Trillini, M.; Trujillo, U.; Dimbuene, Z.T.; Tsilimbaris, M.; Tuzcu, E.M.; Uchendu, U.S.; Ukwaja, K.N.; Uzun, S.B.; van de Vijver, S.; Van Dingenen, R.; van Gool, C.H.; van Os, J.; Varakin, Y.Y.; Vasankari, T.J.; Vasconcelos, A.M.; Vavilala, M.S.; Veerman, L.J.; Velasquez-Melendez, G.; Venketasubramanian, N.; Vijayakumar, L.; Villalpando, S.; Violante, F.S.; Vlassov, V.V.; Vollset, S.E.; Wagner, G.R.; Waller, S.G.; Wallin, M.T.; Wan, X.; Wang, H.; Wang, J.; Wang, L.; Wang, W.; Wang, Y.; Warouw, T.S.; Watts, C.H.; Weichenthal, S.; Weiderpass, E.; Weintraub, R.G.; Werdecker, A.; Wessells, K.R.; Westerman, R.; Whiteford, H.A.; Wilkinson, J.D.; Williams, H.C.; Williams, T.N.; Woldeyohannes, S.M.; Wolfe, C.D.; Wong, J.Q.; Woolf, A.D.; Wright, J.L.; Wurtz, B.; Xu, G.; Yan, L.L.; Yang, G.; Yano, Y.; Ye, P.; Yenesew, M.; Yentür, G.K.; Yip, P.; Yonemoto, N.; Yoon, S.J.; Younis, M.Z.; Younoussi, Z.; Yu, C.; Zaki, M.E.; Zhao, Y.; Zheng, Y.; Zhou, M.; Zhu, J.; Zhu, S.; Zou, X.; Zunt, J.R.; Lopez, A.D.; Vos, T.; Murray, C.J. GBD 2013 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet, 2015, 386(10010), 2287-2323.
[http://dx.doi.org/10.1016/S0140-6736(15)00128-2] [PMID: 26364544]
[4]
Danaei, G.; Finucane, M.M.; Lu, Y.; Singh, G.M.; Cowan, M.J.; Paciorek, C.J.; Lin, J.K.; Farzadfar, F.; Khang, Y.H.; Stevens, G.A.; Rao, M.; Ali, M.K.; Riley, L.M.; Robinson, C.A.; Ezzati, M. Global Burden of Metabolic Risk Factors of Chronic Diseases Collaborating Group.(Blood Glucose). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2·7 million participants. Lancet, 2011, 378(9785), 31-40.
[http://dx.doi.org/10.1016/S0140-6736(11)60679-X] [PMID: 21705069]
[5]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF Diabetes Atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[6]
World Health Organization The top 10 causes of death fact sheet., 2017.Available from . https://www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
[7]
Cnop, M.; Welsh, N.; Jonas, J.C.; Jörns, A.; Lenzen, S.; Eizirik, D.L. Mechanisms of pancreatic β-cell death in type 1 and type 2 diabetes: many differences, few similarities. Diabetes, 2005, 54(Suppl. 2), S97-S107.
[http://dx.doi.org/10.2337/diabetes.54.suppl_2.S97] [PMID: 16306347 ]
[8]
Halim, M.; Halim, A. The effects of inflammation, aging and oxidative stress on the pathogenesis of diabetes mellitus (type 2 diabetes). Diabetes Metab. Syndr., 2019, 13(2), 1165-1172.
[http://dx.doi.org/10.1016/j.dsx.2019.01.040] [PMID: 31336460 ]
[9]
Salgin, B.; Ong, K.K.; Thankamony, A.; Emmett, P.; Wareham, N.J.; Dunger, D.B. Higher fasting plasma free fatty acid levels are associated with lower insulin secretion in children and adults and a higher incidence of type 2 diabetes. J. Clin. Endocrinol. Metab., 2012, 97(9), 3302-3309.
[http://dx.doi.org/10.1210/jc.2012-1428] [PMID: 22740706]
[10]
Rendell, M. The role of sulphonylureas in the management of type 2 diabetes mellitus. Drugs, 2004, 64(12), 1339-1358.
[http://dx.doi.org/10.2165/00003495-200464120-00006] [PMID: 15200348]
[11]
Houssay, B.A.; Penhos, J.C.; Teodosio, N.; Bowkett, J.; Apelbaum, J. Action of the hypoglycemic sulfonyl compounds in hypophysectomized, adrenalectomized, and depancreatized animals. Ann. N. Y. Acad. Sci., 1957, 71(1), 12-24.
[http://dx.doi.org/10.1111/j.1749-6632.1957.tb54570.x] [PMID: 13459195]
[12]
Loubatières, A. The mechanism of action of the hypoglycemic sulfonamides: a concept based on investigations in animals and in human beings. Ann. N. Y. Acad. Sci., 1957, 71(1), 192-206.
[http://dx.doi.org/10.1111/j.1749-6632.1957.tb54591.x] [PMID: 13459216]
[13]
Seino, S.; Miki, T. Physiological and pathophysiological roles of ATP-sensitive K+ channels. Prog. Biophys. Mol. Biol., 2003, 81(2), 133-176.
[http://dx.doi.org/10.1016/S0079-6107(02)00053-6] [PMID: 12565699]
[14]
Tinker, A.; Aziz, Q.; Li, Y.; Specterman, M. ATP-sensitive potassium channels and their physiological and pathophysiological roles. Compr. Physiol., 2018, 8(4), 1463-1511.
[http://dx.doi.org/10.1002/cphy.c170048] [PMID: 30215858]
[15]
Gribble, F.M.; Reimann, F. Sulphonylurea action revisited: the post-cloning era. Diabetologia, 2003, 46(7), 875-891.
[http://dx.doi.org/10.1007/s00125-003-1143-3] [PMID: 12819907]
[16]
Przibilla, J.; Dembla, S.; Rizun, O.; Lis, A.; Jung, M.; Oberwinkler, J.; Beck, A.; Philipp, S.E. Ca2+-dependent regulation and binding of calmodulin to multiple sites of Transient Receptor Potential Melastatin 3 (TRPM3) ion channels. Cell Calcium, 2018, 73, 40-52.
[http://dx.doi.org/10.1016/j.ceca.2018.03.005] [PMID: 29880196]
[17]
Sulis, P.M.; Dambrós, B.F.; Mascarello, A.; Dos Santos, A.R.S.; Yunes, R.A.; Nunes, R.J.; Frederico, M.J.S.; Barreto Silva, F.R.M. Sulfonyl(thio)urea derivative induction of insulin secretion is mediated by potassium, calcium, and sodium channel signal transduction. J. Cell. Physiol., 2019, 234(7), 10138-10147.
[http://dx.doi.org/10.1002/jcp.27680] [PMID: 30417369]
[18]
Berggren, P.O.; Larsson, O. Ca2+ and pancreatic B-cell function. Biochem. Soc. Trans., 1994, 22(1), 12-18.
[http://dx.doi.org/10.1042/bst0220012] [PMID: 8206203]
[19]
Proks, P.; Clark, R. The role of two pore channels (TPCs) in pancreatic beta cell stimulus-secretion coupling; University of Oxford: Oxford, 2014.
[20]
Heister, P.M. The role of two pore channels (TPCs) in pancreatic beta cell stimulus-secretion coupling; University of Oxford, 2012.
[21]
Ashcroft, S.J.H.; Niki, I.; Kenna, S.; Weng, L.; Skeer, J.; Coles, B.; Ashcroft, F.M. The β-cell sulfonylurea receptor. Adv. Exp. Med. Biol., 1993, 334, 47-61.
[http://dx.doi.org/10.1007/978-1-4615-2910-1_4] [PMID: 8249695]
[22]
Hellman, B.; Gylfe, E.; Grapengiesser, E.; Lund, P-E.; Berts, A. Biochim. Biophys. Acta Rev. Biomembr., 1992, 1113, 295-305.
[http://dx.doi.org/10.1016/0304-4157(92)90003-S]
[23]
Schofield, C.J.; Sutherland, C. Disordered insulin secretion in the development of insulin resistance and Type 2 diabetes. Diabet. Med., 2012, 29(8), 972-979.
[http://dx.doi.org/10.1111/j.1464-5491.2012.03655.x] [PMID: 22443306]
[24]
Alexander, S.P.H.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Catterall, W.A.; Spedding, M.; Peters, J.A.; Harmar, A.J. CGTP collaborators.The concise guide to pharmacology 2013/14: ion channels. Br. J. Pharmacol., 2013, 170(8), 1607-1651.
[http://dx.doi.org/10.1111/bph.12447] [PMID: 24528239]
[25]
Alexander, S.P.H.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Spedding, M.; Peters, J.A.; Harmar, A.J. CGTP collaborators.The concise guide to pharmacology 2013/14: enzymes. Br. J. Pharmacol., 2013, 170(8), 1797-1867.
[http://dx.doi.org/10.1111/bph.12451] [PMID: 24528243]
[26]
Alexander, S.P.H.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Spedding, M.; Peters, J.A.; Harmar, A.J. CGTP collaborators. the concise guide to pharmacology 2013/14: transporters. Br. J. Pharmacol., 2013, 170(8), 1706-1796.
[http://dx.doi.org/10.1111/bph.12450] [PMID: 24528242]
[27]
Alexander, S.P.H.; Benson, H.E.; Faccenda, E.; Pawson, A.J.; Sharman, J.L.; Spedding, M.; Peters, J.A.; Harmar, A.J. CGTP collaborators. the concise guide to pharmacology 2013/14: nuclear hormone receptors. Br. J. Pharmacol., 2013, 170(8), 1652-1675.
[http://dx.doi.org/10.1111/bph.12448] [PMID: 24528240]
[28]
Antcliff, J.F.; Haider, S.; Proks, P.; Sansom, M.S.; Ashcroft, F.M. Functional analysis of a structural model of the ATP-binding site of the KATP channel Kir6.2 subunit. EMBO J., 2005, 24(2), 229-239.
[http://dx.doi.org/10.1038/sj.emboj.7600487] [PMID: 15650751]
[29]
Ashcroft, S.J.H.; Ashcroft, F.M. The sulfonylurea receptor. Biochim. Biophys. Acta, 1992, 1175, 45-59.
[30]
Ashcroft, S.J.H.; Ashcroft, F.M. Hormones and Cell Regulation Nunez, J. and Dumont, J.E., Eds.; Colloque INSERM/J. Libbey Eurotext: Paris, . 1989, 198, pp. 99-103.
[31]
Ashcroft, S.J.; Niki, I.; Kenna, S.; Weng, L.; Skeer, J.; Coles, B.; Ashcroft, F.M. The beta-cell sulfonylurea receptor. Adv. Exp. Med. Biol., 1993, 334, 47-61.
[http://dx.doi.org/10.1007/978-1-4615-2910-1_4] [PMID: 8249695]
[32]
Seino, S. ATP-sensitive potassium channels: a model of heteromultimeric potassium channel/receptor assemblies. Annu. Rev. Physiol., 1999, 61, 337-362.
[http://dx.doi.org/10.1146/annurev.physiol.61.1.337] [PMID: 10099692]
[33]
Inagaki, N.; Gonoi, T.; Clement, J.P., IV; Namba, N.; Inazawa, J.; Gonzalez, G.; Aguilar-Bryan, L.; Seino, S.; Bryan, J. Reconstitution of IKATP: an inward rectifier subunit plus the sulfonylurea receptor. Science, 1995, 270(5239), 1166-1170.
[http://dx.doi.org/10.1126/science.270.5239.1166] [PMID: 7502040]
[34]
Sakura, H.; Ammala, C.; Smith, P.A.; Gribble, F.M.; Ashcroft, F.M. Cloning and functional expression of the cDNA encoding a novel ATP-sensitive potassium channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle. FEBS Lett., 1995, 377(3), 338-344.
[http://dx.doi.org/10.1016/0014-5793(95)01369-5] [PMID: 8549751]
[35]
Seino, S.; Sugawara, K.; Yokoi, N.; Takahashi, H. β-Cell signalling and insulin secretagogues: A path for improved diabetes therapy. Diabetes Obes. Metab., 2017, 19(Suppl. 1), 22-29.
[http://dx.doi.org/10.1111/dom.12995] [PMID: 28880474]
[36]
Gribble, F.M.; Tucker, S.J.; Seino, S.; Ashcroft, F.M. Tissue specificity of sulfonylureas: studies on cloned cardiac and beta-cell K(ATP) channels. Diabetes, 1998, 47(9), 1412-1418.
[http://dx.doi.org/10.2337/diabetes.47.9.1412] [PMID: 9726229]
[37]
Quast, U.; Stephan, D.; Bieger, S.; Russ, U. The impact of ATP-sensitive K+ channel subtype selectivity of insulin secretagogues for the coronary vasculature and the myocardium. Diabetes, 2004, 53(Suppl. 3), S156-S164.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S156] [PMID: 15561904]
[38]
Bienengraeber, M.; Alekseev, A.E.; Abraham, M.R.; Carrasco, A.J.; Moreau, C.; Vivaudou, M.; Dzeja, P.P.; Terzic, A. ATPase activity of the sulfonylurea receptor: a catalytic function for the KATP channel complex. FASEB J., 2000, 14(13), 1943-1952.
[http://dx.doi.org/10.1096/fj.00-0027com] [PMID: 11023978]
[39]
Inagaki, N.; Tsuura, Y.; Namba, N.; Masuda, K.; Gonoi, T.; Horie, M.; Seino, Y.; Mizuta, M.; Seino, S. Cloning and functional characterization of a novel ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J. Biol. Chem., 1995, 270(11), 5691-5694.
[http://dx.doi.org/10.1074/jbc.270.11.5691] [PMID: 7890693]
[40]
Seino, S.; Takahashi, H.; Takahashi, T.; Shibasaki, T. Treating diabetes today: a matter of selectivity of sulphonylureas. Diabetes Obes. Metab., 2012, 14(Suppl. 1), 9-13.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01507.x] [PMID: 22118705]
[41]
Seino, S.; Zhang, C.L.; Shibasaki, T. Sulfonylurea action re-revisited. J. Diabetes Investig., 2010, 1(1-2), 37-39.
[http://dx.doi.org/10.1111/j.2040-1124.2010.00014.x] [PMID: 24843406]
[42]
Ashcroft, F.M.; Rorsman, P. K(ATP) channels and islet hormone secretion: new insights and controversies. Nat. Rev. Endocrinol., 2013, 9(11), 660-669.
[http://dx.doi.org/10.1038/nrendo.2013.166] [PMID: 24042324]
[43]
Miki, T.; Nagashima, K.; Tashiro, F.; Kotake, K.; Yoshitomi, H.; Tamamoto, A.; Gonoi, T.; Iwanaga, T.; Miyazaki, J.; Seino, S. Defective insulin secretion and enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. USA, 1998, 95(18), 10402-10406.
[http://dx.doi.org/10.1073/pnas.95.18.10402] [PMID: 9724715]
[44]
Seghers, V.; Nakazaki, M.; DeMayo, F.; Aguilar-Bryan, L.; Bryan, J. Sur1 knockout mice. A model for K(ATP) channel-independent regulation of insulin secretion. J. Biol. Chem., 2000, 275(13), 9270-9277.
[http://dx.doi.org/10.1074/jbc.275.13.9270] [PMID: 10734066]
[45]
Shiota, C.; Larsson, O.; Shelton, K.D.; Shiota, M.; Efanov, A.M.; Hoy, M.; Lindner, J.; Kooptiwut, S.; Juntti-Berggren, L.; Gromada, J.; Berggren, P.O.; Magnuson, M.A. Sulfonylurea receptor type 1 knock-out mice have intact feeding-stimulated insulin secretion despite marked impairment in their response to glucose. J. Biol. Chem., 2002, 277(40), 37176-37183.
[http://dx.doi.org/10.1074/jbc.M206757200] [PMID: 12149271]
[46]
Flanagan, S.E.; Clauin, S.; Bellanné-Chantelot, C.; de Lonlay, P.; Harries, L.W.; Gloyn, A.L.; Ellard, S. Update of mutations in the genes encoding the pancreatic beta-cell K(ATP) channel subunits Kir6.2 (KCNJ11) and sulfonylurea receptor 1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum. Mutat., 2009, 30(2), 170-180.
[http://dx.doi.org/10.1002/humu.20838] [PMID: 18767144]
[47]
Babenko, A.P.; Gonzalez, G.; Aguilar-Bryan, L.; Bryan, J. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells. Circ. Res., 1998, 83(11), 1132-1143.
[http://dx.doi.org/10.1161/01.RES.83.11.1132] [PMID: 9831708]
[48]
Lorenz, E.; Terzic, A. Physical association between recombinant cardiac ATP-sensitive K+ channel subunits Kir6.2 and SUR2A. J. Mol. Cell. Cardiol., 1999, 31(2), 425-434.
[http://dx.doi.org/10.1006/jmcc.1998.0876] [PMID: 10093054]
[49]
Inagaki, N.; Gonoi, T.; Clement, J.P.; Wang, C.Z. Aguilar- Bryan, L., Bryan, J., and Seino, S. A family of sulfonylurea receptors determines the pharmacological properties of ATP-sensitive K1 channels. Neuron, 1996, 16, 1011-1017.
[http://dx.doi.org/10.1016/S0896-6273(00)80124-5] [PMID: 8630239]
[50]
Russ, U.; Hambrock, A.; Artunc, F. Loffler- Walz, C., Horio, Y., Kurachi, Y., and Quast, U. Coexpression with the inward rectifier K(1) channel Kir6.1 increases the affinity of the vascular sulfonylurea receptor SUR2B for glibenclamide. Mol. Pharmacol., 1999, 56, 955-961.
[http://dx.doi.org/10.1124/mol.56.5.955] [PMID: 10531400]
[51]
Satoh, E.; Yamada, M.; Kondo, C.; Repunte, V.P.; Horio, Y.; Iijima, T.; Kurachi, Y. Intracellular nucleotide-mediated gating of SUR/Kir6.0 complex potassium channels expressed in a mammalian cell line and its modification by pinacidil. J. Physiol., 1998, 511(Pt 3), 663-674.
[http://dx.doi.org/10.1111/j.1469-7793.1998.663bg.x] [PMID: 9714850]
[52]
Thorneloe, K.S.; Maruyama, Y.; Malcolm, A.T.; Light, P.E.; Walsh, M.P.; Cole, W.C. Protein kinase C modulation of recombinant ATP-sensitive K(+) channels composed of Kir6.1 and/or Kir6.2 expressed with SUR2B. J. Physiol., 2002, 541(Pt 1), 65-80.
[http://dx.doi.org/10.1113/jphysiol.2002.018101] [PMID: 12015420]
[53]
Kramer, W. The molecular interaction of sulfonylureas withβ-cell ATP-sensitive K+-channels. Diabetes Res. Clin. Pract.28, 1995, S67-S80.
[54]
Müller, G.; Satoh, Y.; Geisen, K. Extrapancreatic effects of sulfonylureas--a comparison between glimepiride and conventional sulfonylureas. Diabetes Res. Clin. Pract., 1995, 28(Suppl.), S115-S137.
[http://dx.doi.org/10.1016/0168-8227(95)01089-V] [PMID: 8529504]
[55]
Campbell, K.P.; Leung, A.T.; Sharp, A.H. The biochemistry and molecular biology of the dihydropyridine-sensitive calcium channel. Trends Neurosci., 1988, 11(10), 425-430.
[http://dx.doi.org/10.1016/0166-2236(88)90193-2] [PMID: 2469159]
[56]
Seino, S.; Chen, L.; Seino, M. Blonde1 0, Takeda J, Johnson JH, Bell GI Cloning of the a1 subunit of voltage dependent calcium channels expressed in pancreatic p-cells. Proc. Natl. Acad. Sci. USA, 1992, 89, 584-588.
[http://dx.doi.org/10.1073/pnas.89.2.584] [PMID: 1309948]
[57]
Perez-Reyes, E.; Wei, X.; Catellano, A.; Birnbaumer, L. Molecular diversity of L-type Ca2+ channels. J. Biol. Chem., 1990, 265, 20430-20436.
[PMID: 2173707]
[58]
Petersen, O.H.; Findlay, I. Electrophysiology of the pancreas. Physiol. Rev., 1987, 67(3), 1054-1116.
[http://dx.doi.org/10.1152/physrev.1987.67.3.1054] [PMID: 2440063]
[59]
Ashcroft, F.M. Adenosine 5′-triphosphate-sensitive potassium channels. Annu. Rev. Neurosci., 1988, 11, 97-118.
[http://dx.doi.org/10.1146/annurev.ne.11.030188.000525] [PMID: 2452599]
[60]
Satin, L.S.; Hopkins, W.F.; Fatherazi, S.; Cook, D.L. Expression of a rapid, low-voltage threshold K current in insulin-secreting cells is dependent on intracellular calcium buffering. J. Membr. Biol., 1989, 112(3), 213-222.
[http://dx.doi.org/10.1007/BF01870952] [PMID: 2515282]
[61]
Boyd, A.E. III Sulfonylurea receptors, ion channels, and fruit flies. Diabetes, 1988, 37(7), 847-850.
[http://dx.doi.org/10.2337/diab.37.7.847] [PMID: 2454858]
[62]
Bokvist, K.; Rorsman, P.; Smith, P.A. Effects of external tetraethylammonium ions and quinine on delayed rectifying K+ channels in mouse pancreatic β-cells. J. Physiol., 1990, 423, 311-325.
[http://dx.doi.org/10.1113/jphysiol.1990.sp018024] [PMID: 2201760]
[63]
Smith, P.A.; Bokvist, K.; Arkhammar, P.; Berggren, P.O.; Rorsman, P. Delayed rectifying and calcium-activated K+ channels and their significance for action potential repolarization in mouse pancreatic β-cells. J. Gen. Physiol., 1990, 95(6), 1041-1059.
[http://dx.doi.org/10.1085/jgp.95.6.1041] [PMID: 2197368]
[64]
Philipson, L.H.; Hice, R.E.; Schaefer, K. Sequence and functional expression in Xenopus oocytes of a human insulinoma and islet potassium channel. Proc. Natl. Acad. Sci. USA. Neurobiology, 1991, (88), 53-57.
[65]
Wollheim, C.B.; Sharp, G.W.G. Regulation of insulin release by calcium. Physiol. Rev., 1981, 61(4), 914-973.
[http://dx.doi.org/10.1152/physrev.1981.61.4.914] [PMID: 6117094]
[66]
Prentki, M.; Matschinsky, F. Ca2+, cAMP, and in coupling mechanisms of insulin secretion. Physiol. Rev., 1987, 67, 1185-1248.
[http://dx.doi.org/10.1152/physrev.1987.67.4.1185] [PMID: 2825225]
[67]
Bond, C.T.; Ammala, C.; Ashfield, R.; Blair, T.A.; Gribble, F.; Khan, R.N.; Lee, K.; Proks, P.; Rowe, I.C.; Sakura, H. Cloning and functional expression of the cDNA encoding an inwardly-rectifying potassium channel expressed in pancreatic β-cells and in the brain. FEBS Lett., 1995, 367(1), 61-66.
[http://dx.doi.org/10.1016/0014-5793(95)00497-W] [PMID: 7601286]
[68]
Aguilar-Bryan, L.; Nichols, C.G.; Wechsler, S.W.; Clement, J.P.; Boyd, A.E.; Gonzalez, G.; Herrera-Sosa, H.; Nguy, K.; Bryan, J.; Nelson, D.A. Cloning of theβ-cell highaffinity sulphonylurea receptor: a regulator of insulin secretion. Science, 1995, 268, 423-425.
[http://dx.doi.org/10.1126/science.7716547] [PMID: 7716547]
[69]
Daniel, L. The B-cell response to oral hypoglycemic agents. Diabetes Res. Clin. Pract., 1995, 28, 581-589.
[70]
Gribble, F.M.; Tucker, S.J.; Ashcroft, F.M. The interaction of nucleotides with the tolbutamide block of cloned ATP-sensitive K+ channel currents expressed in Xenopus oocytes: a reinterpretation. J. Physiol., 1997, 504(Pt 1), 35-45.
[http://dx.doi.org/10.1111/j.1469-7793.1997.00035.x] [PMID: 9350615]
[71]
Ashcroft, F.M.; Proks, P.; Smith, P.A.; Ammala, C.; Bokvist, K.; Rorsman, P. Stimulus-secretion coupling in pancreatic β cells. J. Cell. Biochem., 1994, 55(Suppl.), 54-65.
[http://dx.doi.org/10.1002/jcb.240550007] [PMID: 7929618]
[72]
Gloyn, A.L.; Weedon, M.N.; Owen, K.R.; Turner, M.J.; Knight, B.A.; Hitman, G.; Walker, M.; Levy, J.C.; Sampson, M.; Halford, S.; McCarthy, M.I.; Hattersley, A.T.; Frayling, T.M. Large-scale association studies of variants in genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) confirm that the KCNJ11 E23K variant is associated with type 2 diabetes. Diabetes, 2003, 52(2), 568-572.
[http://dx.doi.org/10.2337/diabetes.52.2.568] [PMID: 12540637]
[73]
Michael, V. Mikhailov, Ellina A. Mikhailova, Stephen J.H. Ashcroft,Investigation of the molecular assembly of L-cell KATP channels. FEBS Lett., 2000, 48259-48264.
[74]
Idevall-Hagren, O; Jakobsson, I; Xu, Y; Tengholm, A. Spatial control of Epac2 activity by cAMP and Ca2+-mediated activation of Ras in pancreatic β cells Sci Signal 6(273), 2013. ra29.1-11, S1-6
[75]
Skelin, M.; Rupnik, M. cAMP increases the sensitivity of exocytosis to Ca2+ primarily through protein kinase A in mouse pancreatic beta cells. Cell Calcium, 2011, 49(2), 89-99.
[http://dx.doi.org/10.1016/j.ceca.2010.12.005] [PMID: 21242000]
[76]
Takahashi, H.; Shibasaki, T.; Park, J.H. Po147 Interplay between incretin and sulfonylurea through Epac2A/Rap1 signaling in insulin secretion. Diabetes, 2015, 9(4), 1262.
[http://dx.doi.org/10.2337/db14-0576] [PMID: 25315008]
[77]
Zhang, C.L.; Katoh, M.; Shibasaki, T.; Minami, K.; Sunaga, Y.; Takahashi, H.; Yokoi, N.; Iwasaki, M.; Miki, T.; Seino, S. The cAMP sensor Epac2 is a direct target of antidiabetic sulfonylurea drugs. Science, 2009, 325(5940), 607-610.
[http://dx.doi.org/10.1126/science.1172256] [PMID: 19644119]
[78]
Robichaux, W.G., III; Cheng, X. Intracellular cAMP Sensor EPAC: Physiology, Pathophysiology, and Therapeutics Development. Physiol. Rev., 2018, 98(2), 919-1053.
[http://dx.doi.org/10.1152/physrev.00025.2017] [PMID: 29537337]
[79]
Shibasaki, T.; Takahashi, H.; Miki, T.; Sunaga, Y.; Matsumura, K.; Yamanaka, M.; Zhang, C.; Tamamoto, A.; Satoh, T.; Miyazaki, J.; Seino, S. Essential role of Epac2/Rap1 signaling in regulation of insulin granule dynamics by cAMP. Proc. Natl. Acad. Sci. USA, 2007, 104(49), 19333-19338.
[http://dx.doi.org/10.1073/pnas.0707054104] [PMID: 18040047]
[80]
Ozaki, N.; Shibasaki, T.; Kashima, Y.; Miki, T.; Takahashi, K.; Ueno, H.; Sunaga, Y.; Yano, H.; Matsuura, Y.; Iwanaga, T.; Takai, Y.; Seino, S. cAMP-GEFII is a direct target of cAMP in regulated exocytosis. Nat. Cell Biol., 2000, 2(11), 805-811.
[http://dx.doi.org/10.1038/35041046] [PMID: 11056535]
[81]
Shibasaki, T. Elucidation of the function and role of cAMP sensor Epac2A in insulin secretion. Diabetol. Int., 2012, 3(4), 187-196.
[http://dx.doi.org/10.1007/s13340-012-0094-7]
[82]
Shibasaki, T.; Takahashi, T.; Takahashi, H.; Seino, S. Cooperation between cAMP signalling and sulfonylurea in insulin secretion. Diabetes Obes. Metab., 2014, 16(Suppl. 1), 118-125.
[http://dx.doi.org/10.1111/dom.12343] [PMID: 25200305]
[83]
Naim, M.; Bhat, S.; Rankin, K.N.; Dennis, S.; Chowdhury, S.F.; Siddiqi, I.; Drabik, P.; Sulea, T.; Bayly, C.I.; Jakalian, A.; Purisima, E.O. Solvated interaction energy (SIE) for scoring protein-ligand binding affinities. 1. Exploring the parameter space. J. Chem. Inf. Model., 2007, 47(1), 122-133.
[http://dx.doi.org/10.1021/ci600406v] [PMID: 17238257]
[84]
Takahashi, T.; Shibasaki, T.; Takahashi, H.; Sugawara, K.; Ono, A.; Inoue, N.; Furuya, T.; Seino, S. Antidiabetic sulfonylureas and cAMP cooperatively activate Epac2A. Sci. Signal., 2013, 6(298), ra94.
[http://dx.doi.org/10.1126/scisignal.2004581] [PMID: 24150255]
[85]
Bos, J.L. Epac proteins: multi-purpose cAMP targets. Trends Biochem. Sci., 2006, 31(12), 680-686.
[http://dx.doi.org/10.1016/j.tibs.2006.10.002] [PMID: 17084085]
[86]
Jarrard, R.E.; Wang, Y.; Salyer, A.E.; Pratt, E.P.; Soderling, I.M.; Guerra, M.L.; Lange, A.M.; Broderick, H.J.; Hockerman, G.H. Potentiation of sulfonylurea action by an EPAC-selective cAMP analog in INS-1 cells: comparison of tolbutamide and gliclazide and a potential role for EPAC activation of a 2-APB-sensitive Ca2+ influx. Mol. Pharmacol., 2013, 83(1), 191-205.
[http://dx.doi.org/10.1124/mol.112.081943] [PMID: 23071106]
[87]
Marshall, A.; Gingerich, R.L.; Wright, P.H. Hepatic effect of sulfonylureas. Metabolism, 1970, 19(12), 1046-1052.
[http://dx.doi.org/10.1016/0026-0495(70)90028-4] [PMID: 5492043]
[88]
Barzilai, N.; Groop, P-H.; Groop, L.; DeFronzo, R.A. A novel mechanism of glipizide sulfonylurea action: decreased metabolic clearance rate of insulin. Acta Diabetol., 1995, 32(4), 273-278.
[http://dx.doi.org/10.1007/BF00576262] [PMID: 8750768]
[89]
Cefalu, W.; Kourides, I.; Fischette, C. Glipizide GITS vs immediate-release glipizide in the managment of patient with NIDDM. Diabetes, 1994, 43(Suppl. 1), 59A.
[90]
Simonson, D.C.; Kourides, I.; Fischette, C. Efficacy and safety of glipizide GITS in the treatment of non-insulin-dependent diabetes mellitus. Diabetes, 1994, 43(Suppl. 1), 63A.
[91]
Widen, E; Blomqvist, A-C; Erikson, J; Groop, L Effects of glibenclamide on clearance of insulin in type 2 diabetes (abstract). Acta Endocrinol,, 1991, t24(Suppl 3), 40.
[92]
Cryer Minireview, E. Glucagon in the pathogenesis of hypoglycemia and hyperglycemia in diabetes philip. Endocrinology, 2012, 153(3), 1039-1048.
[http://dx.doi.org/10.1210/en.2011-1499] [PMID: 22166985]
[93]
ter Braak, E.W.; Appelman, A.M.; van der Tweel, I.; Erkelens, D.W.; van Haeften, T.W. The sulfonylurea glyburide induces impairment of glucagon and growth hormone responses during mild insulin-induced hypoglycemia. Diabetes Care, 2002, 25(1), 107-112.
[http://dx.doi.org/10.2337/diacare.25.1.107] [PMID: 11772910]
[94]
Bohannon, NV; Lorenzi, M; Grodsky, GM; Karam, JH Stimulatory effects of tolbutamide infusion on plasma glucagon in insulindependent diabetic subjects, J Clin Endocrinol Metab,.
[95]
Landstedt-Hallin, L.; Adamson, U.; Lins, P.E. Oral glibenclamide suppresses glucagon secretion during insulin-induced hypoglycemia in patients with type 2 diabetes. J. Clin. Endocrinol. Metab., 1999, 84(9), 3140-3145.
[http://dx.doi.org/10.1210/jc.84.9.3140] [PMID: 10487677]
[96]
Rossetti, L.; Giaccari, A.; DeFronzo, R.A. Glucose toxicity. Diabetes Care, 1990, 13(6), 610-630.
[http://dx.doi.org/10.2337/diacare.13.6.610] [PMID: 2192847]
[97]
Mandarino, L.J.; Gerich, J.E. Prolonged sulfonylurea administration decreases insulin resistance and increases insulin secretion in non-insulin-dependent diabetes mellitus: evidence for improved insulin action at a postreceptor site in hepatic as well as extrahepatic tissues. Diabetes Care, 1984, 7(Suppl. 1), 89-99.
[PMID: 6376034]
[98]
Müller, G. Dynamics of plasma membrane microdomains and cross-talk to the insulin signalling cascade. FEBS Lett., 2002, 531(1), 81-87.
[http://dx.doi.org/10.1016/S0014-5793(02)03402-6] [PMID: 12401208]
[99]
Müller, G. The molecular mechanism of the insulin-mimetic/sensitizing activity of the antidiabetic sulfonylurea drug Amaryl. Mol. Med., 2000, 6(11), 907-933.
[http://dx.doi.org/10.1007/BF03401827] [PMID: 11147570]
[100]
Arrault, A.; Rocchi, S.; Picard, F.; Maurois, P.; Pirotte, B.; Vamecq, J. A short series of antidiabetic sulfonylureas exhibit multiple ligand PPARgamma-binding patterns. Biomed. Pharmacother., 2009, 63(1), 56-62.
[http://dx.doi.org/10.1016/j.biopha.2007.12.007] [PMID: 18280694]
[101]
Peter, M. Thulé & Guillermo Umpierrez, Sulfonylureas a new look at old therapy. Curr. Diab. Rep., 2014, 14, 473.
[http://dx.doi.org/10.1007/s11892-014-0473-5]
[102]
Basit, A.; Riaz, M.; Fawwad, A. Glimepiride: evidence-based facts, trends, and observations (GIFTS)[corrected]. Vasc. Health Risk Manag., 2012, 8, 463-472.
[http://dx.doi.org/10.2147/VHRM.S33194] [PMID: 23028231]
[103]
Nyenwe, EA; Jerkins, TW; Umpierrez, GE; Kitabchi, AE. Management of type 2 diabetes: evolving strategies for the treatment of patients with type 2 diabetes.Metabolism. Up-to-date review of pharmacological agents available for the management of patients with diabetes type 2. Metabolism, 2011, 60(1), 1-23.
[http://dx.doi.org/10.1016/j.metabol.2010.09.010]
[104]
Andrew Krentz et al. Do sulfonylureas still have a role in type 2 diabetes? Prescriber, 2011, 22(10), 33-36.
[105]
Schopman, J.E.; Simon, A.C.; Hoefnagel, S.J.; Hoekstra, J.B.; Scholten, R.J.; Holleman, F. The incidence of mild and severe hypoglycaemia in patients with type 2 diabetes mellitus treated with sulfonylureas: a systematic review and meta-analysis. Diabetes Metab. Res. Rev., 2014, 30(1), 11-22.
[http://dx.doi.org/10.1002/dmrr.2470] [PMID: 24030920]
[106]
Avogaro, A. Treating diabetes today with gliclazide MR: a matter of numbers. Diabetes Obes. Metab., 2012, 14(Suppl. 1), 14-19.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01508.x] [PMID: 22118706]
[107]
Aquilante, C.L. Sulfonylurea pharmacogenomics in Type 2 diabetes: the influence of drug target and diabetes risk polymorphisms. Expert Rev. Cardiovasc. Ther., 2010, 8(3), 359-372.
[http://dx.doi.org/10.1586/erc.09.154] [PMID: 20222815]
[108]
Nakano, N.; Miyazawa, N.; Sakurai, T.; Kizaki, T.; Kimoto, K.; Takahashi, K.; Ishida, H.; Takahashi, M.; Suzuki, K.; Ohno, H. Gliclazide inhibits proliferation but stimulates differentiation of white and brown adipocytes. J. Biochem., 2007, 142(5), 639-645.
[http://dx.doi.org/10.1093/jb/mvm172] [PMID: 17965069]
[109]
Sena, C.M.; Louro, T.; Matafome, P.; Nunes, E.; Monteiro, P.; Seiça, R. Antioxidant and vascular effects of gliclazide in type 2 diabetic rats fed high-fat diet. Physiol. Res., 2009, 58(2), 203-209.
[PMID: 18380531]
[110]
Kim, J.S.; Kim, I.K.; Lee, S.Y.; Song, B.W.; Cha, M.J.; Song, H.; Choi, E.; Lim, S.; Ham, O.; Jang, Y.; Hwang, K.C. Anti-proliferative effect of rosiglitazone on angiotensin II-induced vascular smooth muscle cell proliferation is mediated by the mTOR pathway. Cell Biol. Int., 2012, 36(3), 305-310.
[http://dx.doi.org/10.1042/CBI20100524] [PMID: 22050182]
[111]
Katakami, N.; Yamasaki, Y.; Hayaishi-Okano, R.; Ohtoshi, K.; Kaneto, H.; Matsuhisa, M.; Kosugi, K.; Hori, M. Metformin or gliclazide, rather than glibenclamide, attenuate progression of carotid intima-media thickness in subjects with type 2 diabetes. Diabetologia, 2004, 47(11), 1906-1913.
[http://dx.doi.org/10.1007/s00125-004-1547-8] [PMID: 15565373]
[112]
Lee, K.Y.; Kim, J.R.; Choi, H.C. Gliclazide, a KATP channel blocker, inhibits vascular smooth muscle cell proliferation through the CaMKKβ-AMPK pathway. Vascul. Pharmacol., 2018, 102, 21-28.
[http://dx.doi.org/10.1016/j.vph.2018.01.001] [PMID: 29337033]
[113]
Mary, T.; Korytkowski, M.D. Sulfonylurea treatment of type 2 diabetes mellitus: focus on glimepiride, pharmacotherapy. Journal of Human Pharmacology and Drug Therapy, 2004, 24(5), 606-620.
[http://dx.doi.org/10.1592/phco.24.6.606.34752]
[114]
Lawrence, J.C., Jr; Hiken, J.F.; James, D.E.; Hiken, J.F.; James, D.E. Stimulation of glucose transport and glucose transporter phosphorylation by okadaic acid in rat adipocytes. J. Biol. Chem., 1990, 265(32), 19768-19776.
[PMID: 2174052]
[115]
Lawrence, J.C., Jr; Hiken, J.F.; James, D.E. Phosphorylation of the glucose transporter in rat adipocytes. Identification of the intracellular domain at the carboxyl terminus as a target for phosphorylation in intact-cells and in vitro. J. Biol. Chem., 1990, 265(4), 2324-2332.
[PMID: 2404983]
[116]
Chen, H.; Hamel, F.G.; Siford, G.; Duckworth, W.C. Alteration of rat hepatic insulin metabolism by glyburide and glipizide. J. Pharmacol. Exp. Ther., 1993, 264(3), 1293-1298.
[PMID: 8450464]
[117]
Sato, J.; Ohsawa, I.; Oshida, Y.; Sato, Y.; Sakamoto, N. Effects of glimepiride on in vivo insulin action in normal and diabetic rats. Diabetes Res. Clin. Pract., 1993, 22(1), 3-9.
[http://dx.doi.org/10.1016/0168-8227(93)90126-P] [PMID: 8137714]
[118]
Del Guerra, S.; Parentini, C.; Bracci, C.; Lupi, R.; Marselli, L.; Aragona, M.; Navalesi, R.; Marchetti, P. Insulin release form isolated, human islets after acute or prolonged exposure to glimepiride. Acta Diabetol., 2000, 37(3), 139-141.
[http://dx.doi.org/10.1007/s005920070017] [PMID: 11277315]
[119]
Gregorio, F.; Santeusanio, F.; Filipponi, P.; Cristallini, S.; Ambrosi, F. Effects of glimepiride on from isolated rat pancreas at different glucose concentrations. Acta Diabetol., 1996, 33, 25-29.
[http://dx.doi.org/10.1007/BF00571936] [PMID: 8777281]
[120]
Marchetti, P.; Dotta, F.; Ling, Z.; Lupi, R.; Del Guerra, S.; Santangelo, C.; Realacci, M.; Marselli, L.; Di Mario, U.; Navalesi, R. Function of pancreatic islets isolated from a type 1 diabetic patient. Diabetes Care, 2000, 23(5), 701-703.
[http://dx.doi.org/10.2337/diacare.23.5.701] [PMID: 10834434]
[121]
Pupilli, C.; Giannini, S.; Marchetti, P.; Lupi, R.; Antonelli, A.; Malavasi, F.; Takasawa, S.; Okamoto, H.; Ferrannini, E. Autoantibodies to CD38 (ADP-ribosyl cyclase/cyclic ADP-ribose hydrolase) in Caucasian patients with diabetes: effects on insulin release from human islets. Diabetes, 1999, 48(12), 2309-2315.
[http://dx.doi.org/10.2337/diabetes.48.12.2309] [PMID: 10580418]
[122]
Rabuazzo, A.M.; Buscema, M.; Vinci, C.; Caltabiano, V.; Vetri, M.; Forte, F.; Vigneri, R.; Purrello, F. Glyburide and tolbutamide induce desensitization of insulin release in rat pancreatic islets by different mechanisms. Endocrinology, 1992, 131(4), 1815-1820.
[http://dx.doi.org/10.1210/endo.131.4.1396327] [PMID: 1396327]
[123]
Schrijnders, D.; Wever, R.; Kleefstra, N.; Houweling, S.T.; van Hateren, K.J.; de Bock, G.H.; Bilo, H.J.; Groenier, K.H.; Landman, G.W. Addition of sulphonylurea to metformin does not relevantly change body weight: a prospective observational cohort study (ZODIAC-39). Diabetes Obes. Metab., 2016, 18(10), 973-979.
[http://dx.doi.org/10.1111/dom.12700] [PMID: 27265756]
[124]
Phung, O.J.; Scholle, J.M.; Talwar, M.; Coleman, C.I. Effect of noninsulin antidiabetic drugs added to metformin therapy on glycemic control, weight gain, and hypoglycemia in type 2 diabetes. JAMA, 2010, 303(14), 1410-1418.
[http://dx.doi.org/10.1001/jama.2010.405] [PMID: 20388897]
[125]
Marre, M.; Howlett, H.; Lehert, P.; Allavoine, T. Improved glycaemic control with metformin-glibenclamide combined tablet therapy (Glucovance) in Type 2 diabetic patients inadequately controlled on metformin. Diabet. Med., 2002, 19(8), 673-680.
[http://dx.doi.org/10.1046/j.1464-5491.2002.00774.x] [PMID: 12147149]
[126]
Ristic, S.; Collober-Maugeais, C.; Pecher, E.; Cressier, F. Comparison of nateglinide and gliclazide in combination with metformin, for treatment of patients with Type 2 diabetes mellitus inadequately controlled on maximum doses of metformin alone. Diabet. Med., 2006, 23(7), 757-762.
[http://dx.doi.org/10.1111/j.1464-5491.2006.01914.x] [PMID: 16842480]
[127]
Charbonnel, B.; Schernthaner, G.; Brunetti, P.; Matthews, D.R.; Urquhart, R.; Tan, M.H.; Hanefeld, M. Long-term efficacy and tolerability of add-on pioglitazone therapy to failing monotherapy compared with addition of gliclazide or metformin in patients with type 2 diabetes. Diabetologia, 2005, 48(6), 1093-1104.
[http://dx.doi.org/10.1007/s00125-005-1751-1] [PMID: 15889234]
[128]
Göke, B.; Gallwitz, B.; Eriksson, J.; Hellqvist, A.; Gause-Nilsson, I. D1680C00001 Investigators. Saxagliptin is non-inferior to glipizide in patients with type 2 diabetes mellitus inadequately controlled on metformin alone: a 52-week randomised controlled trial. Int. J. Clin. Pract., 2010, 64(12), 1619-1631.
[http://dx.doi.org/10.1111/j.1742-1241.2010.02510.x] [PMID: 20846286]
[129]
Ferrannini, E.; Fonseca, V.; Zinman, B. Fifty-two-week efficacy and safety of vildagliptin vs. glimepiride in patients with type 2 diabetes mellitus inadequately controlled on metformin monotherapy. Diabetes Obes. Metab., 2009.
[130]
Alejandro Akrouh1, S. Eliza Halcomb2, Colin G. Nichols1 and monica sala-rabanal1,molecular biology of KATP channels and implications for health and Disease. IUBMB Life, 2009, 61(10), 971-978.
[http://dx.doi.org/10.1002/iub.246] [PMID: 19787700]
[131]
Lebovitz, H.E.; Melander, A. Sulfonylureas: Basic Aspects and Clinical Uses[M]// International Textbook of Diabetes Mellitus; John Wiley Sons Ltd: Hoboken. , 2004.
[132]
Furman, B.L. Meglitinide, Reference Module in Biomedical Sciences; Elsevier: Amsterdam, 2017.
[133]
Brasseur, R.; Ruysschaert, J.M. Conformation and mode of organization of amphiphilic membrane components: A conformational analysis. Biochem. J., 1986, 238, 1-11.
[http://dx.doi.org/10.1042/bj2380001]
[134]
Lins, L.; Brasseur, R. The hydrophobic effect in protein folding. FASEB J., 1995, 9(7), 535-540.
[http://dx.doi.org/10.1096/fasebj.9.7.7737462] [PMID: 7737462]
[135]
Malaisse, WJ Insulinotropic effect of (2S)-2-benzyl-3(cis-hexahydro-2-isoindolinylcarbonyl) propionate. II. Ionophoretic and conformational aspects. Gen. Phamuaco., 1995, 126, 1319-1325.
[136]
Malaisse, W.J. Repaglinide, a new oral antidiabetic agent: a review of recent preclinical studies. Eur. J. Clin. Invest., 1999, 29(S2)(Suppl. 2), 21-29.
[http://dx.doi.org/10.1046/j.1365-2362.1999.00001.x] [PMID: 10383607]
[137]
Willy, J. Pharmacology of the meglitinide analogs new treatment options for type 2 diabetes mellitus, treatments in endocrinology. Treat. Endocrinol., 2003, 2(6), 401-414.
[138]
Malaisse, W.J.; Brasseur, R. Bakkali Nadi, A Conformation analysis of non-sulfonylurea hypoglycemic agents in the meglitinide family [J]. Biochem. Pharmacol., 1995, 50(2), 1879-1884.
[139]
McLeod, J.F. Clinical pharmacokinetics of nateglinide: a rapidly-absorbed, short-acting insulinotropic agent. Clin. Pharmacokinet., 2004, 43(2), 97-120.
[http://dx.doi.org/10.2165/00003088-200443020-00003] [PMID: 14748619]
[140]
Hollingdal, M.; Sturis, J.; Gall, M.A.; Damsbo, P.; Pincus, S.; Veldhuis, J.D.; Pørksen, N.; Schmitz, O.; Juhl, C.B. Repaglinide treatment amplifies first-phase insulin secretion and high-frequency pulsatile insulin release in Type 2 diabetes. Diabet. Med., 2005, 22(10), 1408-1413.
[http://dx.doi.org/10.1111/j.1464-5491.2005.01652.x] [PMID: 16176204]
[141]
Blicklé, J.F. Meglitinide analogues: a review of clinical data focused on recent trials. Diabetes Metab., 2006, 32(2), 113-120.
[http://dx.doi.org/10.1016/S1262-3636(07)70257-4] [PMID: 16735959]
[142]
Del Prato, S.; Heine, R.J.; Keilson, L.; Guitard, C.; Shen, S.G.; Emmons, R.P. Treatment of patients over 64 years of age with type 2 diabetes: experience from nateglinide pooled database retrospective analysis. Diabetes Care, 2003, 26(7), 2075-2080.
[http://dx.doi.org/10.2337/diacare.26.7.2075] [PMID: 12832316]
[143]
Culy, C.R.; Jarvis, B. Repaglinide: a review of its therapeutic use in type 2 diabetes mellitus. Drugs, 2001, 61(11), 1625-1660.
[http://dx.doi.org/10.2165/00003495-200161110-00008] [PMID: 11577798]
[144]
Sakura, H.; Wat, N.; Horton, V.; Millns, H.; Turner, R.C.; Ashcroft, F.M. Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia, 1996, 39(10), 1233-1236.
[http://dx.doi.org/10.1007/BF02658512] [PMID: 8897013]
[145]
Nagashima, K.; Takahashi, A.; Ikeda, H.; Hamasaki, A.; Kuwamura, N.; Yamada, Y.; Seino, Y. Sulfonylurea and non-sulfonylurea hypoglycemic agents: pharmachological properties and tissue selectivity. Diabetes Res. Clin. Pract., 2004, 66(Suppl. 1), S75-S78.
[http://dx.doi.org/10.1016/j.diabres.2003.12.011] [PMID: 15563985]
[146]
Ashcroft, S.J.H. The β-cell K(ATP) channel. J. Membr. Biol., 2000, 176(3), 187-206.
[PMID: 10931971]
[147]
Sunaga, Y.; Gonoi, T.; Shibasaki, T.; Ichikawa, K.; Kusama, H.; Yano, H.; Seino, S. The effects of mitiglinide (KAD-1229), a new anti-diabetic drug, on ATP-sensitive K+ channels and insulin secretion: comparison with the sulfonylureas and nateglinide. Eur. J. Pharmacol., 2001, 431(1), 119-125.
[http://dx.doi.org/10.1016/S0014-2999(01)01412-1] [PMID: 11716850 ]
[148]
Manning Fox, J.E.; Kanji, H.D.; French, R.J.; Light, P.E. Cardioselectivity of the sulphonylurea HMR 1098: studies on native and recombinant cardiac and pancreatic K(ATP) channels. Br. J. Pharmacol., 2002, 135(2), 480-488.
[http://dx.doi.org/10.1038/sj.bjp.0704455] [PMID: 11815384]
[149]
Reimann, F.; Proks, P.; Ashcroft, F.M. Effects of mitiglinide (S 21403) on Kir6.2/SUR1, Kir6.2/SUR2A and Kir6.2/SUR2B types of ATP-sensitive potassium channel. Br. J. Pharmacol., 2001, 132(7), 1542-1548.
[http://dx.doi.org/10.1038/sj.bjp.0703962] [PMID: 11264248]
[150]
Butler, P. Pulsatile Insulin Secretion[M]//Mechanisms and Biological Significance of Pulsatile Hormone Secretion. Novartis Foundation Symposium, Portland 2272008.
[151]
Pørksen, N.; Hollingdal, M.; Juhl, C.; Butler, P.; Veldhuis, J.D.; Schmitz, O. Pulsatile insulin secretion: detection, regulation, and role in diabetes. Diabetes, 2002, 51(Suppl. 1), S245-S254.
[http://dx.doi.org/10.2337/diabetes.51.2007.S245] [PMID: 11815487]
[152]
Weir, G.C.; Bonner-Weir, S. Five stages of evolving β-cell dysfunction during progression to diabetes. Diabetes, 2004, 53(Suppl. 3), S16-S21.
[http://dx.doi.org/10.2337/diabetes.53.suppl_3.S16] [PMID: 15561905]
[153]
Del Prato, S.; Tiengo, A. The importance of first-phase insulin secretion: implications for the therapy of type 2 diabetes mellitus. Diabetes Metab. Res. Rev., 2001, 17(3), 164-174.
[http://dx.doi.org/10.1002/dmrr.198] [PMID: 11424229]
[154]
Bruce, D.G.; Storlien, L.H.; Furler, S.M.; Chisholm, D.J. Cephalic phase metabolic responses in normal weight adults. Metabolism, 1987, 36(8), 721-725.
[http://dx.doi.org/10.1016/0026-0495(87)90106-5] [PMID: 3298939]
[155]
Mitrakou, A.; Kelley, D.; Mokan, M.; Veneman, T.; Pangburn, T.; Reilly, J.; Gerich, J. Role of reduced suppression of glucose production and diminished early insulin release in impaired glucose tolerance. N. Engl. J. Med., 1992, 326(1), 22-29.
[http://dx.doi.org/10.1056/NEJM199201023260104] [PMID: 1727062]
[156]
Calles-Escandon, J.; Robbins, D.C. Loss of early phase of insulin release in humans impairs glucose tolerance and blunts thermic effect of glucose. Diabetes, 1987, 36(10), 1167-1172.
[http://dx.doi.org/10.2337/diab.36.10.1167] [PMID: 2888695]
[157]
Basu, A.; Alzaid, A.; Dinneen, S.; Caumo, A.; Cobelli, C.; Rizza, R.A. Effects of a change in the pattern of insulin delivery on carbohydrate tolerance in diabetic and nondiabetic humans in the presence of differing degrees of insulin resistance. J. Clin. Invest., 1996, 97(10), 2351-2361.
[http://dx.doi.org/10.1172/JCI118678] [PMID: 8636416]
[158]
Fuhlendorff, J.; Rorsman, P.; Kofod, H.; Brand, C.L.; Rolin, B.; MacKay, P.; Shymko, R.; Carr, R.D. Stimulation of insulin release by repaglinide and glibenclamide involves both common and distinct processes. Diabetes, 1998, 47(3), 345-351.
[http://dx.doi.org/10.2337/diabetes.47.3.345] [PMID: 9519738]
[159]
Li, L.; Yang, M.; Li, Z.; Yan, X.; Guo, H.; Pan, H.; Liu, H.; Liao, Y.; Yang, G. Efficacy and safety of mitiglinide versus nateglinide in newly diagnose patients with type 2 diabetes mellitus: a randomized double blind trial. Diabetes Obes. Metab., 2012, 14(2), 187-189.
[http://dx.doi.org/10.1111/j.1463-1326.2011.01494.x] [PMID: 21895920]
[160]
Leslie, S. Satin, Peter C. Butler, Joon Ha, Arthur S. Sherman, Pulsatile insulinsecretion, impaired glucose tolerance and type 2 diabetes. Mol. Aspects Med., 2015, 42, 61-77.
[http://dx.doi.org/10.1016/j.mam.2015.01.003]
[161]
Juhl, C.B.; Pørksen, N.; Hollingdal, M.; Sturis, J.; Pincus, S.; Veldhuis, J.D.; Dejgaard, A.; Schmitz, O. Repaglinide acutely amplifies pulsatile insulin secretion by augmentation of burst mass with no effect on burst frequency. Diabetes Care, 2000, 23(5), 675-681.
[http://dx.doi.org/10.2337/diacare.23.5.675] [PMID: 10834429]
[162]
Song, S.H.; McIntyre, S.S.; Shah, H.; Veldhuis, J.D.; Hayes, P.C.; Butler, P.C. Direct measurement of pulsatile insulin secretion from the portal vein in human subjects. J. Clin. Endocrinol. Metab., 2000, 85(12), 4491-4499.
[http://dx.doi.org/10.1210/jc.85.12.4491] [PMID: 11134098]
[163]
Ritzel, R.A.; Veldhuis, J.D.; Butler, P.C. The mass, but not the frequency, of insulin secretory bursts in isolated human islets is entrained by oscillatory glucose exposure. Am. J. Physiol. Endocrinol. Metab., 2006, 290(4), E750-E756.
[http://dx.doi.org/10.1152/ajpendo.00381.2005] [PMID: 16278244]
[164]
Yesildag, B.; Bock, T.; Herrmanns, K. Kin of IRRE-Like Protein 2 is a phosphorylated glycoprotein that regulates basal insulin secretion. J. Biol. Chem., 2015, 290(43), 25891-25906.
[165]
Aldhahi, W.; Armstrong, J.; Bouche, C.; Carr, R.D.; Moses, A.; Goldfine, A.B. Beta-cell insulin secretory response to oral hypoglycemic agents is blunted in humans in vivo during moderate hypoglycemia. J. Clin. Endocrinol. Metab., 2004, 89(9), 4553-4557.
[http://dx.doi.org/10.1210/jc.2004-0266] [PMID: 15356061]
[166]
Palerm, C.C.; Bequette, B.W. Hypoglycemia detection and prediction using continuous glucose monitoring-a study on hypoglycemic clamp data. J. Diabetes Sci. Technol., 2007, 1(5), 624-629.
[http://dx.doi.org/10.1177/193229680700100505] [PMID: 19885130]
[167]
Malmgren, S.; Ahrén, B. Deciphering the hypoglycemic glucagon response: development of a graded hyperinsulinemic hypoglycemic clamp technique in female mice. Endocrinology, 2015, 156(10), 3866-3871.
[http://dx.doi.org/10.1210/EN.2015-1314] [PMID: 26132921]
[168]
Moses, R. A review of clinical experience with the prandial glucose regulator, repaglinide, in the treatment of type 2 diabetes. Expert Opin. Pharmacother., 2000, 1(7), 1455-1467.
[http://dx.doi.org/10.1517/14656566.1.7.1455] [PMID: 11249478]
[169]
Esposito, K.; Giugliano, D.; Nappo, F.; Marfella, R. Campanian Postprandial Hyperglycemia Study Group.Regression of carotid atherosclerosis by control of postprandial hyperglycemia in type 2 diabetes mellitus. Circulation, 2004, 110(2), 214-219.
[http://dx.doi.org/10.1161/01.CIR.0000134501.57864.66] [PMID: 15197140]
[170]
Saisho, Y. Glycemic variability and oxidative stress: a link between diabetes and cardiovascular disease? Int. J. Mol. Sci., 2014, 15(10), 18381-18406.
[http://dx.doi.org/10.3390/ijms151018381] [PMID: 25314300]
[171]
Rizzo, M.R.; Marfella, R.; Barbieri, M.; Boccardi, V.; Vestini, F.; Lettieri, B.; Canonico, S.; Paolisso, G. Relationships between daily acute glucose fluctuations and cognitive performance among aged type 2 diabetic patients. Diabetes Care, 2010, 33(10), 2169-2174.
[http://dx.doi.org/10.2337/dc10-0389] [PMID: 20573753]
[172]
Ohara, T.; Doi, Y.; Ninomiya, T.; Hirakawa, Y.; Hata, J.; Iwaki, T.; Kanba, S.; Kiyohara, Y. Glucose tolerance status and risk of dementia in the community: the Hisayama study. Neurology, 2011, 77(12), 1126-1134.
[http://dx.doi.org/10.1212/WNL.0b013e31822f0435] [PMID: 21931106]
[173]
Abbink, E.J.; van der Wal, P.S.; Sweep, C.G.; Smits, P.; Tack, C.J. Compared to glibenclamide, repaglinide treatment results in a more rapid fall in glucose level and beta-cell secretion after glucose stimulation. Diabetes Metab. Res. Rev., 2004, 20(6), 466-471.
[http://dx.doi.org/10.1002/dmrr.474] [PMID: 15386823]
[174]
Barnett, A.H.; Anderson, D.M.; Shelley, S.; Morgan, R.; Owens, D.R. A placebo-controlled crossover study comparing the effects of nateglinide and glibenclamide on postprandial hyperglycaemia and hyperinsulinaemia in patients with type 2 diabetes. Diabetes Obes. Metab., 2004, 6(2), 104-113.
[http://dx.doi.org/10.1111/j.1462-8902.2004.00321.x] [PMID: 14746575]
[175]
Damsbo, P.; Clauson, P.; Marbury, T.C.; Windfeld, K. A double-blind randomized comparison of meal-related glycemic control by repaglinide and glyburide in well-controlled type 2 diabetic patients. Diabetes Care, 1999, 22(5), 789-794.
[http://dx.doi.org/10.2337/diacare.22.5.789] [PMID: 10332683]
[176]
Gerich, J.; Raskin, P.; Jean-Louis, L.; Purkayastha, D.; Baron, M.A. PRESERVE-beta: two-year efficacy and safety of initial combination therapy with nateglinide or glyburide plus metformin. Diabetes Care, 2005, 28(9), 2093-2099.
[http://dx.doi.org/10.2337/diacare.28.9.2093] [PMID: 16123472]
[177]
Omori, Kazuno; Nomoto, Hiroshi Nakamura, Akinobu Reduction in glucose fluctuations in elderly patients with type 2 diabetes using repaglinide: A randomized controlled trial of repaglinide vs sulfonylurea. J. Diab. Invest., 2018, 10(2), 1-8.
[178]
Yajima, T.; Yajima, K.; Hayashi, M.; Takahashi, H.; Yasuda, K. Serum albumin-adjusted glycated albumin as a better indicator of glycemic control in Type 2 diabetes mellitus patients with short duration of hemodialysis. Diabetes Res. Clin. Pract., 2017, 130, 148-153.
[http://dx.doi.org/10.1016/j.diabres.2017.05.020] [PMID: 28641154]
[179]
Yin, J.; Jin, D.; Wang, H. Serum glycated albumin is superior to hemoglobin A1c for correlating with HMGB1 in coronary artery disease with type 2 diabetic mellitus patients. Int. J. Clin. Exp. Med., 2015, 8(4), 4821-4825.
[PMID: 26131056]
[180]
Pan, J.; Li, Q.; Zhang, L.; Jia, L.; Tang, J.; Bao, Y.; Jia, W. Serum glycated albumin predicts the progression of diabetic retinopathy--a five year retrospective longitudinal study. J. Diabetes Complications, 2014, 28(6), 772-778.
[http://dx.doi.org/10.1016/j.jdiacomp.2014.06.015] [PMID: 25073934]
[181]
Kondaveeti, S.B. D, K.; Mishra, S.; Kumar R, A.; Shaker, I.A. Evaluation of glycated albumin and microalbuminuria as early risk markers of nephropathy in type 2 diabetes mellitus. J. Clin. Diagn. Res., 2013, 7(7), 1280-1283.
[PMID: 23998045]
[182]
Koga, M.; Murai, J.; Saito, H.; Kasayama, S. Glycated albumin and glycated hemoglobin are influenced differently by endogenous insulin secretion in patients with type 2 diabetes. Diabetes Care, 2010, 33(2), 270-272.
[http://dx.doi.org/10.2337/dc09-1002] [PMID: 19846794]
[183]
Ogawa, A.; Hayashi, A.; Kishihara, E.; Yoshino, S.; Takeuchi, A.; Shichiri, M. New indices for predicting glycaemic variability. PLoS One, 2012, 7(9)e46517
[http://dx.doi.org/10.1371/journal.pone.0046517] [PMID: 23029543]
[184]
Hay, L.C.; Wilmshurst, E.G.; Fulcher, G. Unrecognized hypo- and hyperglycemia in well-controlled patients with type 2 diabetes mellitus: the results of continuous glucose monitoring. Diabetes Technol. Ther., 2003, 5(1), 19-26.
[http://dx.doi.org/10.1089/152091503763816427] [PMID: 12725703]
[185]
Gehlaut, R.R.; Dogbey, G.Y.; Schwartz, F.L.; Marling, C.R.; Shubrook, J.H. Hypoglycemia in type 2 diabetes–more common than you think: a continuous glucose monitoring study. J. Diabetes Sci. Technol., 2015, 9(5), 999-1005.
[http://dx.doi.org/10.1177/1932296815581052] [PMID: 25917335]
[186]
Nomoto, H.; Sekizaki, T.; Jyoudo, S. The effect of switching from sulfonlylureas to repaglinide -observational trial. Diabetes Front, 2015, 26, 613-617.
[187]
Lang, V.; Youssef, N.; Light, P.E. The molecular genetics of sulfonylurea receptors in the pathogenesis and treatment of insulin secretory disorders and type 2 diabetes. Curr. Diab. Rep., 2011, 11(6), 543-551.
[http://dx.doi.org/10.1007/s11892-011-0233-8] [PMID: 21968738]
[188]
Olson, T.M.; Terzic, A.; Human, K. ATP) channelopathies: diseases of metabolic homeostasis. Pflugers Arch., 2010, 460(2), 295-306.
[http://dx.doi.org/10.1007/s00424-009-0771-y] [PMID: 20033705]
[189]
Scarsi, M.; Podvinec, M.; Roth, A.; Hug, H.; Kersten, S.; Albrecht, H.; Schwede, T.; Meyer, U.A.; Rücker, C. Sulfonylureas and glinides exhibit peroxisome proliferator-activated receptor gamma activity: a combined virtual screening and biological assay approach. Mol. Pharmacol., 2007, 71(2), 398-406.
[http://dx.doi.org/10.1124/mol.106.024596] [PMID: 17082235]
[190]
Perfetti, R.; D’Amico, E. Rational drug design and PPAR agonists. Curr. Diab. Rep., 2005, 5(5), 340-345.
[http://dx.doi.org/10.1007/s11892-005-0091-3] [PMID: 16188168]
[191]
Staels, B.; Fruchart, J.C. Therapeutic roles of peroxisome proliferator-activated receptor agonists. Diabetes, 2005, 54(8), 2460-2470.
[http://dx.doi.org/10.2337/diabetes.54.8.2460] [PMID: 16046315]
[192]
Martín, J.A.; Brooks, D.A.; Prieto, L.; González, R.; Torrado, A.; Rojo, I.; López de Uralde, B.; Lamas, C.; Ferritto, R.; Dolores Martín-Ortega, M.; Agejas, J.; Parra, F.; Rizzo, J.R.; Rhodes, G.A.; Robey, R.L.; Alt, C.A.; Wendel, S.R.; Zhang, T.Y.; Reifel-Miller, A.; Montrose-Rafizadeh, C.; Brozinick, J.T.; Hawkins, E.; Misener, E.A.; Briere, D.A.; Ardecky, R.; Fraser, J.D.; Warshawsky, A.M. 2-Alkoxydihydrocinnamates as PPAR agonists. Activity modulation by the incorporation of phenoxy substituents. Bioorg. Med. Chem. Lett., 2005, 15(1), 51-55.
[http://dx.doi.org/10.1016/j.bmcl.2004.10.042] [PMID: 15582409]
[193]
Hazama, Y.; Matsuhisa, M.; Ohtoshi, K.; Gorogawa, S.; Kato, K.; Kawamori, D.; Yoshiuchi, K.; Nakamura, Y.; Shiraiwa, T.; Kaneto, H.; Yamasaki, Y.; Hori, M. Beneficial effects of nateglinide on insulin resistance in type 2 diabetes. Diabetes Res. Clin. Pract., 2006, 71(3), 251-255.
[http://dx.doi.org/10.1016/j.diabres.2005.08.004] [PMID: 16214255]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy