Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Molecular Hybridization as a Tool in the Design of Multi-target Directed Drug Candidates for Neurodegenerative Diseases

Author(s): Vanessa Silva Gontijo, Flávia P. Dias Viegas, Cindy Juliet Cristancho Ortiz, Matheus de Freitas Silva, Caio Miranda Damasio, Mayara Chagas Rosa, Thâmara Gaspar Campos, Dyecika Souza Couto, Kris Simone Tranches Dias and Claudio Viegas*

Volume 18, Issue 5, 2020

Page: [348 - 407] Pages: 60

DOI: 10.2174/1385272823666191021124443

Price: $65

Abstract

Neurodegenerative Diseases (NDs) are progressive multifactorial neurological pathologies related to neuronal impairment and functional loss from different brain regions. Currently, no effective treatments are available for any NDs, and this lack of efficacy has been attributed to the multitude of interconnected factors involved in their pathophysiology. In the last two decades, a new approach for the rational design of new drug candidates, also called multitarget-directed ligands (MTDLs) strategy, has emerged and has been used in the design and for the development of a variety of hybrid compounds capable to act simultaneously in diverse biological targets. Based on the polypharmacology concept, this new paradigm has been thought as a more secure and effective way for modulating concomitantly two or more biochemical pathways responsible for the onset and progress of NDs, trying to overcome low therapeutical effectiveness. As a complement to our previous review article (Curr. Med. Chem. 2007, 14 (17), 1829-1852. https://doi.org/10.2174/092986707781058805), herein we aimed to cover the period from 2008 to 2019 and highlight the most recent advances of the exploitation of Molecular Hybridization (MH) as a tool in the rational design of innovative multifunctional drug candidate prototypes for the treatment of NDs, specially focused on AD, PD, HD and ALS.

Keywords: Molecular hybridization, multi-target directed ligands, rational drug design, multifunctional drugs, neurodegenerative diseases, MTDLs.

Graphical Abstract
[1]
Bolognesi, M.L.; Matera, R.; Minarini, A.; Rosini, M.; Melchiorre, C. Alzheimer’s disease: new approaches to drug discovery. Curr. Opin. Chem. Biol., 2009, 13(3), 303-308.
[http://dx.doi.org/10.1016/j.cbpa.2009.04.619] [PMID: 19467915]
[2]
Youdim, M.B.H.; Buccafusco, J.J. Multi-functional drugs for various CNS targets in the treatment of neurodegenerative disorders. Trends Pharmacol. Sci., 2005, 26(1), 27-35.
[http://dx.doi.org/10.1016/j.tips.2004.11.007] [PMID: 15629202]
[3]
Ross, C.A.; Poirier, M.A. Protein aggregation and neurodegenerative disease. Nat. Med., 2004, 10(S7)(Suppl.), S10-S17.
[http://dx.doi.org/10.1038/nm1066] [PMID: 15272267]
[4]
Association, A. Alzheimer’s Association. 2011 Alzheimer’s disease facts and figures. Alzheimers Dement., 2011, 7(2), 208-244.
[http://dx.doi.org/10.1016/j.jalz.2011.02.004] [PMID: 21414557]
[5]
Dementia statistics | Alzheimer’s Disease International.,. https://www.alz.co.uk/research/statistics Mar 27, 2019
[6]
Fraga, C.A.M.; Barreiro, E.J. New Insights for multifactorial disease therapy: The challenge of the symbiotic drugs. Curr. Drug Ther., 2008, 3(1), 1-13.
[http://dx.doi.org/10.2174/157488508783331225]
[7]
Zhang, H-Y. One-compound-multiple-targets strategy to combat Alzheimer’s disease. FEBS Lett., 2005, 579(24), 5260-5264.
[http://dx.doi.org/10.1016/j.febslet.2005.09.006] [PMID: 16194540]
[8]
Mattson, M.P.; Magnus, T. Ageing and neuronal vulnerability. Nat. Rev. Neurosci., 2006, 7(4), 278-294.
[http://dx.doi.org/10.1038/nrn1886] [PMID: 16552414]
[9]
Poewe, W.; Seppi, K.; Tanner, C.M.; Halliday, G.M.; Brundin, P.; Volkmann, J.; Schrag, A-E.; Lang, A.E. Parkinson disease. Nat. Rev. Dis. Primers, 2017, 3, 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[10]
Heppner, F.L.; Ransohoff, R.M.; Becher, B. Immune attack: the role of inflammation in Alzheimer disease. Nat. Rev. Neurosci., 2015, 16(6), 358-372.
[http://dx.doi.org/10.1038/nrn3880] [PMID: 25991443]
[11]
Alzheimer’s Facts and Figures Report | Alzheimer’s Association.,. https://www.alz.org/alzheimers-dementia/facts-figures Mar 27, 2019
[12]
Aspectos socioeconômicos | AlzheimerMed,.. http://www.alzheimermed.com.br/conceitos/aspectos-socioeconomicos [Mar 27, 2019]
[13]
Gitler, A.D.; Dhillon, P.; Shorter, J. Neurodegenerative disease: models, mechanisms, and a new hope. Dis. Model. Mech., 2017, 10(5), 499-502.
[http://dx.doi.org/10.1242/dmm.030205] [PMID: 28468935]
[14]
Pozo Devoto, V.M.; Falzone, T.L. Mitochondrial dynamics in Parkinson’s disease: a role for α-synuclein? Dis. Model. Mech., 2017, 10(9), 1075-1087.
[http://dx.doi.org/10.1242/dmm.026294] [PMID: 28883016]
[15]
Amyotrophic Lateral Sclerosis (ALS) Fact Sheet | National Institute of Neurological Disorders and Stroke,. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet [Mar 27, 2019].
[16]
Viegas-Junior, C.; Danuello, A.; da Silva Bolzani, V.; Barreiro, E.J.; Fraga, C.A. Molecular hybridization: a useful tool in the design of new drug prototypes. Curr. Med. Chem., 2007, 14(17), 1829-1852.
[http://dx.doi.org/10.2174/092986707781058805] [PMID: 17627520]
[17]
Dias, K.S.T.; Viegas, C., Jr; Viegas, C. Multi-target directed Drugs: A modern approach for design of new drugs for the treatment of Alzheimer’s disease. Curr. Neuropharmacol., 2014, 12(3), 239-255.
[http://dx.doi.org/10.2174/1570159X1203140511153200] [PMID: 24851088]
[18]
de Freitas Silva, M.; Dias, K.S.T.; Gontijo, V.S.; Ortiz, C.J.C.; Viegas, C., Jr. Multi-target directed drugs as a modern approach for drug design towards alzheimer’s disease: an update. Curr. Med. Chem., 2018, 25(29), 3491-3525.
[http://dx.doi.org/10.2174/0929867325666180111101843] [PMID: 29332563]
[19]
Ivasiv, V.; Albertini, C.; Gonçalves, A.E.; Rossi, M.; Bolognesi, M.L. Molecular hybridization as a tool for designing multitarget drug candidates for complex diseases. Curr. Top. Med. Chem., 2019, 19(19), 1694-1711.
[http://dx.doi.org/10.2174/1568026619666190619115735] [PMID: 31237210]
[20]
Francis, P.T.; Palmer, A.M.; Snape, M.; Wilcock, G.K. The cholinergic hypothesis of Alzheimer’s disease: a review of progress. J. Neurol. Neurosurg. Psychiatry, 1999, 66(2), 137-147.
[http://dx.doi.org/10.1136/jnnp.66.2.137] [PMID: 10071091]
[21]
Rosini, M.; Simoni, E.; Bartolini, M.; Cavalli, A.; Ceccarini, L.; Pascu, N.; McClymont, D.W.; Tarozzi, A.; Bolognesi, M.L.; Minarini, A.; Tumiatti, V.; Andrisano, V.; Mellor, I.R.; Melchiorre, C. Inhibition of acetylcholinesterase, β-amyloid aggregation, and NMDA receptors in Alzheimer’s disease: a promising direction for the multi-target-directed ligands gold rush. J. Med. Chem., 2008, 51(15), 4381-4384.
[http://dx.doi.org/10.1021/jm800577j] [PMID: 18605718]
[22]
Möller, H-J.; Graeber, M.B. The case described by Alois Alzheimer in 1911. Historical and conceptual perspectives based on the clinical record and neurohistological sections. Eur. Arch. Psychiatry Clin. Neurosci., 1998, 248(3), 111-122.
[http://dx.doi.org/10.1007/s004060050027] [PMID: 9728729]
[23]
Kumar, A.; Singh, A.; Ekavali, A review on Alzheimer’s disease pathophysiology and its management: an update. Pharmacol. Rep., 2015, 67(2), 195-203.
[http://dx.doi.org/10.1016/j.pharep.2014.09.004] [PMID: 25712639]
[24]
Grøntvedt, G.R.; Schröder, T.N.; Sando, S.B.; White, L.; Bråthen, G.; Doeller, C.F. Alzheimer’s disease. Curr. Biol., 2018, 28(11), R645-R649.
[http://dx.doi.org/10.1016/j.cub.2018.04.080] [PMID: 29870699]
[25]
Chong, F.P.; Ng, K.Y.; Koh, R.Y.; Chye, S.M. Tau proteins and tauopathies in alzheimer’s disease. Cell. Mol. Neurobiol., 2018, 38(5), 965-980.
[http://dx.doi.org/10.1007/s10571-017-0574-1] [PMID: 29299792]
[26]
Viegas, F.P.D.; Simões, M.C.R. Rocha; Castelli, M. R.; Moreira, V.; Junior, C. Doença de Alzheimer: Caracterização, evolução e implicações do processo neuroinflamatório. Rev. Virtual Quim, 2011, 3(4), 286-306.
[27]
Liu, Q.; Xie, F.R.R.; Moreira, P.I.; Nunomura, A.; Zhu, X.; Smith, M.A.G.P. Prevention and treatment of alzheimer disease and aging: antioxidants mini-reviews in medicinal chemistry mini-reviews. Med. Chem., 2007, 7(2), 171-180.
[28]
Azzi, A. Oxidative stress: A dead end or a laboratory hypothesis? Biochem. Biophys. Res. Commun., 2007, 362(2), 230-232.
[http://dx.doi.org/10.1016/j.bbrc.2007.07.124] [PMID: 17686462]
[29]
Legg, K. Neurodegenerative diseases: An alternative path to reduce neuroinflammation. Nat. Rev. Drug Discov., 2011, 10(12), 901.
[http://dx.doi.org/10.1038/nrd3607] [PMID: 22094870]
[30]
Cummings, J.; Lee, G.; Ritter, A.; Sabbagh, M.; Zhong, K. Alzheimer’s disease drug development pipeline: 2019. Alzheimers Dement. (N. Y.), 2019, 5(1), 272-293.
[http://dx.doi.org/10.1016/j.trci.2019.05.008] [PMID: 31334330]
[31]
Sanabria-Castro, A.; Alvarado-Echeverría, I.; Monge-Bonilla, C. Molecular pathogenesis of alzheimer’s disease: an update. Ann. Neurosci., 2017, 24(1), 46-54.
[http://dx.doi.org/10.1159/000464422] [PMID: 28588356]
[32]
Das, T.K.; Mas, W.R.; Kaneez, F.S.; Fatima, S.K. Oxidative stress gated by fenton and haber weiss reactions and its association with Alzheimer’s disease. Arch. Neurosci., 2014, 2(3), 20078.
[33]
Starkov, A.A.; Beal, F.M. Portal to Alzheimer’s disease. Nat. Med., 2008, 14(10), 1020.
[http://dx.doi.org/10.1038/nm1008-1020]
[34]
Reddy, P.H.; Beal, M.F. Amyloid beta, mitochondrial dysfunction and synaptic damage: implications for cognitive decline in aging and Alzheimer’s disease. Trends Mol. Med., 2008, 14(2), 45-53.
[http://dx.doi.org/10.1016/j.molmed.2007.12.002] [PMID: 18218341]
[35]
Nesi, G.; Sestito, S.; Digiacomo, M.; Rapposelli, S. Oxidative stress, mitochondrial abnormalities and proteins deposition: multitarget approaches in Alzheimer’s disease. Curr. Top. Med. Chem., 2017, 17(27), 3062-3079.
[PMID: 28595557]
[36]
Bolós, M.; Perea, J.R.; Avila, J. Alzheimer’s disease as an inflammatory disease. Biomol. Concepts, 2017, 8(1), 37-43.
[http://dx.doi.org/10.1515/bmc-2016-0029] [PMID: 28231054]
[37]
Akiyama, H.; Barger, S.; Barnum, S.; Bradt, B.; Bauer, J.; Cole, G.M.; Cooper, N.R.; Eikelenboom, P.; Emmerling, M.; Fiebich, B.L.; Finch, C.E.; Frautschy, S.; Griffin, W.S.; Hampel, H.; Hull, M.; Landreth, G.; Lue, L.; Mrak, R.; Mackenzie, I.R.; McGeer, P.L.; O’Banion, M.K.; Pachter, J.; Pasinetti, G.; Plata-Salaman, C.; Rogers, J.; Rydel, R.; Shen, Y.; Streit, W.; Strohmeyer, R.; Tooyoma, I.; Van Muiswinkel, F.L.; Veerhuis, R.; Walker, D.; Webster, S.; Wegrzyniak, B.; Wenk, G.; Wyss-Coray, T. Inflammation and Alzheimer’s disease. Neurobiol. Aging, 2000, 21(3), 383-421.
[http://dx.doi.org/10.1016/S0197-4580(00)00124-X] [PMID: 10858586]
[38]
Irwin, M.R.; Vitiello, M.V. Implications of sleep disturbance and inflammation for Alzheimer’s disease dementia. Lancet Neurol., 2019, 18(3), 296-306.
[http://dx.doi.org/10.1016/S1474-4422(18)30450-2] [PMID: 30661858]
[39]
Giunta, B.; Fernandez, F.; Nikolic, W.V.; Obregon, D.; Rrapo, E.; Town, T.; Tan, J. Inflammaging as a prodrome to Alzheimer’s disease. J. Neuroinflammation, 2008, 5(1), 51.
[http://dx.doi.org/10.1186/1742-2094-5-51] [PMID: 19014446]
[40]
Kamal, M.; Greig, N.; Reale, M. Anti-Inflammatory properties of acetylcholinesterase inhibitors administred in Alzheimers disease. Antiinflamm. Antiallergy Agents Med. Chem., 2009, 8(1), 85-100.
[http://dx.doi.org/10.2174/187152309787580810]
[41]
Heneka, M.T.; O’Banion, M.K. Inflammatory processes in Alzheimer’s disease. J. Neuroimmunol., 2007, 184(1-2), 69-91.
[http://dx.doi.org/10.1016/j.jneuroim.2006.11.017] [PMID: 17222916]
[42]
Parkinson’s Foundation. Statistics of Parkinson’s disease., https://parkinson.org/Understanding-Parkinsons/Statistics [Mar 28, 2019].
[43]
Przedborski, S. The two-century journey of Parkinson disease research. Nat. Rev. Neurosci., 2017, 18(4), 251-259.
[http://dx.doi.org/10.1038/nrn.2017.25] [PMID: 28303016]
[44]
Obeso, J.A.; Rodriguez-Oroz, M.C.; Goetz, C.G.; Marin, C.; Kordower, J.H.; Rodriguez, M.; Hirsch, E.C.; Farrer, M.; Schapira, A.H.V.; Halliday, G. Missing pieces in the Parkinson’s disease puzzle. Nat. Med., 2010, 16(6), 653-661.
[http://dx.doi.org/10.1038/nm.2165] [PMID: 20495568]
[45]
Wang, Q.; Liu, Y.; Zhou, J. Neuroinflammation in Parkinson’s disease and its potential as therapeutic target. Transl. Neurodegener., 2015, 4(1), 19.
[http://dx.doi.org/10.1186/s40035-015-0042-0] [PMID: 26464797]
[46]
Valdinocci, D.; Simões, R.F.; Kovarova, J.; Cunha-Oliveira, T.; Neuzil, J.; Pountney, D.L. Intracellular and intercellular mitochondrial dynamics in parkinson’s disease. Front. Neurosci., 2019, 13, 930.
[http://dx.doi.org/10.3389/fnins.2019.00930] [PMID: 31619944]
[47]
Zhang, W.; Wang, T.; Pei, Z.; Miller, D. S.; Wu, X.; Block, M. L.; Wilson, B.; Zhang, W.; Zhou, Y.; Hong, J.-S. Aggregated-synuclein activates microglia: a process leading to disease progresion in Parkinson’s disease. 2005, 19(6), 533-42.
[http://dx.doi.org/10.1096/fj.04-2751com]
[48]
Zarei, S.; Carr, K.; Reiley, L.; Diaz, K.; Guerra, O.; Altamirano, P.F.; Pagani, W.; Lodin, D.; Orozco, G.; Chinea, A. A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int., 2015, 6, 171.
[http://dx.doi.org/10.4103/2152-7806.169561] [PMID: 26629397]
[49]
National Institute of neurological disorders and stroke. Amyotrophic Lateral Sclerosis (ALS) Fact Sheet | National Institute of Neurological Disorders and Stroke.,. https://www.ninds.nih.gov/Disorders/Patient-Caregiver-Education/Fact-Sheets/Amyotrophic-Lateral-Sclerosis-ALS-Fact-Sheet [Mar 28, 2019].
[50]
Kiernan, M.C.; Vucic, S.; Cheah, B.C.; Turner, M.R.; Eisen, A.; Hardiman, O.; Burrell, J.R.; Zoing, M.C. Amyotrophic lateral sclerosis. Lancet, 2011, 377(9769), 942-955.
[http://dx.doi.org/10.1016/S0140-6736(10)61156-7] [PMID: 21296405]
[51]
Ghosh, R.; Tabrizi, S.J. Huntington disease. Handb. Clin. Neurol., 2018, 147, 255-278.
[http://dx.doi.org/10.1016/B978-0-444-63233-3.00017-8] [PMID: 29325616]
[52]
Dayalu, P.; Albin, R.L. Huntington disease: pathogenesis and treatment. Neurol. Clin., 2015, 33(1), 101-114.
[http://dx.doi.org/10.1016/j.ncl.2014.09.003] [PMID: 25432725]
[53]
Bates, G.P.; Dorsey, R.; Gusella, J.F.; Hayden, M.R.; Kay, C.; Leavitt, B.R.; Nance, M.; Ross, C.A.; Scahill, R.I.; Wetzel, R.; Wild, E.J.; Tabrizi, S.J. Huntington disease. Nat. Rev. Dis. Primers, 2015, 1, 15005.
[http://dx.doi.org/10.1038/nrdp.2015.5] [PMID: 27188817]
[54]
Bolognesi, M.L.; Cavalli, A. Multitarget drug discovery and polypharmacology. ChemMedChem, 2016, 11(12), 1190-1192.
[http://dx.doi.org/10.1002/cmdc.201600161] [PMID: 27061625]
[55]
Lansbury, P.T., Jr Back to the future: the ‘old-fashioned’ way to new medications for neurodegeneration. Nat. Med., 2004, 10(S7)(Suppl.), S51-S57.
[http://dx.doi.org/10.1038/nrn1435] [PMID: 15298008]
[56]
Bolognesi, M.L. Polypharmacology in a single drug: multitarget drugs. Curr. Med. Chem., 2013, 20(13), 1639-1645.
[http://dx.doi.org/10.2174/0929867311320130004] [PMID: 23410164]
[57]
Dias, K S T; de Paula, C. T.; Riquiel, M. M.; Lago, S. T.; Costa, K. C. M.; Vaz, S. M.; Machado, R. P.; Lima, L. M. S.; Viegas, C. Junior aplicações recentes da abordagem de fármacos multialvo para o tratamento da doença de alzheimer recent applications of the multitarget directed ligands approach for the treatment of Alzheimer’s disease. Rev. virtual Química, 2015, 7(2), 609-648.
[58]
Wang, N.; Qiu, P.; Cui, W.; Yan, X.; Zhang, B.; He, S. Recent advances in multi-target anti-Alzheimer disease compounds (2013 up to the present). Curr. Med. Chem., 2019, 26(30), 5684-5710.
[http://dx.doi.org/10.2174/0929867326666181203124102] [PMID: 30501591]
[59]
Lazar, C.; Alicja, K; Tair, K; Konishi, Y. Drug evolution concept in drug design: 1. Hybridization method. J. Med. Chem., 2004, 47(27), 6973-6982.
[60]
Schmitt, B.; Bernhardt, T.; Moeller, H-J.; Heuser, I. Frölich, L. Combination therapy in Alzheimer’s disease. CNS Drugs, 2004, 18(13), 827-844.
[http://dx.doi.org/10.2165/00023210-200418130-00001] [PMID: 15521788]
[61]
Piau, A.; Nourhashémi, F.; Hein, C.; Caillaud, C.; Vellas, B. Progress in the development of new drugs in Alzheimer’s disease. J. Nutr. Health Aging, 2011, 15(1), 45-57.
[http://dx.doi.org/10.1007/s12603-011-0012-x] [PMID: 21267520]
[62]
Iraji, A.; Khoshneviszadeh, M.; Firuzi, O.; Khoshneviszadeh, M.; Edraki, N. Novel small molecule therapeutic agents for Alzheimer disease: Focusing on BACE1 and multi-target directed ligands. Bioorg. Chem., 2020, 97, 103649
[http://dx.doi.org/10.1016/j.bioorg.2020.103649] [PMID: 32101780]
[63]
Li, Q.; He, S.; Chen, Y.; Feng, F.; Qu, W.; Sun, H. Donepezil-based multi-functional cholinesterase inhibitors for treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 158, 463-477.
[http://dx.doi.org/10.1016/j.ejmech.2018.09.031] [PMID: 30243151]
[64]
Knowles, J. Donepezil in Alzheimer’s disease: an evidence-based review of its impact on clinical and economic outcomes. Core Evid., 2006, 1(3), 195-219.
[65]
Dias Viegas, F.P.; de Freitas Silva, M.; Divino da Rocha, M.; Castelli, M.R.; Riquiel, M.M.; Machado, R.P.; Vaz, S.M.; Simões de Lima, L.M.; Mancini, K.C.; Marques de Oliveira, P.C.; Morais, É.P.; Gontijo, V.S.; da Silva, F.M.R.; D’Alincourt da Fonseca Peçanha, D.; Castro, N.G.; Neves, G.A.; Giusti-Paiva, A.; Vilela, F.C.; Orlandi, L.; Camps, I.; Veloso, M.P.; Leomil Coelho, L.F.; Ionta, M.; Ferreira-Silva, G.Á.; Pereira, R.M.; Dardenne, L.E.; Guedes, I.A.; de Oliveira Carneiro Junior, W.; Quaglio Bellozi, P.M.; Pinheiro de Oliveira, A.C.; Ferreira, F.F.; Pruccoli, L.; Tarozzi, A.; Viegas, C., Jr Design, synthesis and pharmacological evaluation of N-benzyl-piperidinyl-aryl-acylhydrazone derivatives as donepezil hybrids: Discovery of novel multi-target anti-alzheimer prototype drug candidates. Eur. J. Med. Chem., 2018, 147, 48-65.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.066] [PMID: 29421570]
[66]
Li, T.; Pan, W.; Wang, K.; Liu, W.; Ma, Q.; Sang, Z. Novel ferulic acid-donepezil hybrids as multifunctional agents for th e treatment of alzheimer’s disease with butyrylcholinesterase, amyloid- β, antioxidant and neuroprotective properties. Lett. Drug Des. Discov., 2017, 14(8), 918-929.
[http://dx.doi.org/10.2174/1570180814666170421181517]
[67]
Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Yang, Y.; Bai, P.; Leng, C.; Xu, Q.; Li, X.; Tan, Z.; Liu, W. Design, synthesis and evaluation of novel ferulic acid-O-alkylamine derivatives as potential multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 379-392.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.039] [PMID: 28279845]
[68]
Sang, Z.; Pan, W.; Wang, K.; Ma, Q.; Yu, L.; Liu, W. Design, synthesis and biological evaluation of 3,4-dihydro-2(1H)-quinoline-O-alkylamine derivatives as new multipotent cholinesterase/monoamine oxidase inhibitors for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(12), 3006-3017.
[http://dx.doi.org/10.1016/j.bmc.2017.03.070] [PMID: 28487125]
[69]
Dias, K.S.T.; de Paula, C.T.; Dos Santos, T.; Souza, I.N.O.; Boni, M.S.; Guimarães, M.J.R.; da Silva, F.M.R.; Castro, N.G.; Neves, G.A.; Veloso, C.C.; Coelho, M.M.; de Melo, I.S.; Giusti, F.C.; Giusti-Paiva, A.; da Silva, M.L.; Dardenne, L.E.; Guedes, I.A.; Pruccoli, L.; Morroni, F.; Tarozzi, A.; Viegas, C., Jr Design, synthesis and evaluation of novel feruloyl-donepezil hybrids as potential multitarget drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 130, 440-457.
[http://dx.doi.org/10.1016/j.ejmech.2017.02.043] [PMID: 28282613]
[70]
Mishra, C.B.; Kumari, S.; Manral, A.; Prakash, A.; Saini, V.; Lynn, A.M.; Tiwari, M. Design, synthesis, in-silico and biological evaluation of novel donepezil derivatives as multi-target-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 125, 736-750.
[http://dx.doi.org/10.1016/j.ejmech.2016.09.057] [PMID: 27721157]
[71]
García-Osta, A.; Cuadrado-Tejedor, M.; García-Barroso, C.; Oyarzábal, J.; Franco, R. Phosphodiesterases as therapeutic targets for Alzheimer’s disease. ACS Chem. Neurosci., 2012, 3(11), 832-844.
[http://dx.doi.org/10.1021/cn3000907] [PMID: 23173065]
[72]
Hu, J.; Huang, Y.D.; Pan, T.; Zhang, T.; Su, T.; Li, X.; Luo, H.Bin; Huang, L. Design, synthesis, and biological evaluation of dual-target inhibitors of acetylcholinesterase (ache) and phosphodiesterase 9a (pde9a) for the treatment of Alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(1), 537-551.
[73]
Hiremathad, A.; Chand, K.; Tolayan, L.; Rajeshwari, K.R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Hydroxypyridinone-benzofuran hybrids with potential protective roles for Alzheimer´s disease therapy. J. Inorg. Biochem., 2018, 179, 82-96.
[http://dx.doi.org/10.1016/j.jinorgbio.2017.11.015] [PMID: 29182921]
[74]
Huang, L.; Miao, H.; Sun, Y.; Meng, F.; Li, X. Discovery of indanone derivatives as multi-target-directed ligands against Alzheimer’s disease. Eur. J. Med. Chem., 2014, 87, 429-439.
[http://dx.doi.org/10.1016/j.ejmech.2014.09.081] [PMID: 25282266]
[75]
Yan, J.; Hu, J.; Liu, A.; He, L.; Li, X.; Wei, H. Design, synthesis, and evaluation of multitarget-directed ligands against Alzheimer’s disease based on the fusion of donepezil and curcumin. Bioorg. Med. Chem., 2017, 25(12), 2946-2955.
[http://dx.doi.org/10.1016/j.bmc.2017.02.048] [PMID: 28454848]
[76]
Wang, L.; Esteban, G.; Ojima, M.; Bautista-Aguilera, O.M.; Inokuchi, T.; Moraleda, I.; Iriepa, I.; Samadi, A.; Youdim, M.B.; Romero, A.; Soriano, E.; Herrero, R.; Fernández Fernández, A.P.; Ricardo-Martínez-Murillo, ; Marco-Contelles, J.; Unzeta, M. Donepezil + propargylamine + 8-hydroxyquinoline hybrids as new multifunctional metal-chelators, ChE and MAO inhibitors for the potential treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2014, 80, 543-561.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.078] [PMID: 24813882]
[77]
Wu, M.Y.; Esteban, G.; Brogi, S.; Shionoya, M.; Wang, L.; Campiani, G.; Unzeta, M.; Inokuchi, T.; Butini, S.; Marco-Contelles, J. Donepezil-like multifunctional agents: Design, synthesis, molecular modeling and biological evaluation. Eur. J. Med. Chem., 2016, 121, 864-879.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.001] [PMID: 26471320]
[78]
Fernandes, T.B.; Cunha, M.R.; Sakata, R.P.; Candido, T.M.; Baby, A.R.; Tavares, M.T.; Barbosa, E.G.; Almeida, W.P.; Parise-Filho, R. Synthesis, molecular modeling, and evaluation of novel sulfonylhydrazones as acetylcholinesterase inhibitors for Alzheimer’s disease. Arch. Pharm. (Weinheim), 2017, 350(11), 1-16.
[http://dx.doi.org/10.1002/ardp.201700163] [PMID: 28940630]
[79]
Moradi, A.; Faraji, L.; Nadri, H.; Hasanpour, Z.; Moghadam, F.H.; Pakseresht, B.; Golshani, M.; Moghimi, S.; Ramazani, A.; Firoozpour, L. Synthesis, docking study, and biological evaluation of novel umbellipherone/hymecromone derivatives as acetylcholinesterase/butyrylcholinesterase inhibitors. Med. Chem. Res., 2018, 27(7), 1741-1747.
[http://dx.doi.org/10.1007/s00044-018-2187-8]
[80]
Estrada Valencia, M.; Herrera-Arozamena, C.; de Andrés, L.; Pérez, C.; Morales-García, J.A.; Pérez-Castillo, A.; Ramos, E.; Romero, A.; Viña, D.; Yáñez, M.; Laurini, E.; Pricl, S.; Rodríguez-Franco, M.I. Neurogenic and neuroprotective donepezil-flavonoid hybrids with sigma-1 affinity and inhibition of key enzymes in Alzheimer’s disease. Eur. J. Med. Chem., 2018, 156, 534-553.
[http://dx.doi.org/10.1016/j.ejmech.2018.07.026] [PMID: 30025348]
[81]
Xie, S.S.; Wang, X.; Jiang, N.; Yu, W.; Wang, K.D.; Lan, J.S.; Li, Z.R.; Kong, L.Y. Multi-target tacrine-coumarin hybrids: cholinesterase and monoamine oxidase B inhibition properties against Alzheimer’s disease. Eur. J. Med. Chem., 2015, 95, 153-165.
[http://dx.doi.org/10.1016/j.ejmech.2015.03.040] [PMID: 25812965]
[82]
Xie, S.S.; Lan, J.S.; Wang, X.; Wang, Z.M.; Jiang, N.; Li, F.; Wu, J.J.; Wang, J.; Kong, L.Y. Design, synthesis and biological evaluation of novel donepezil-coumarin hybrids as multi-target agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2016, 24(7), 1528-1539.
[http://dx.doi.org/10.1016/j.bmc.2016.02.023] [PMID: 26917219]
[83]
Cai, P.; Fang, S.Q.; Yang, H.L.; Yang, X.L.; Liu, Q.H.; Kong, L.Y.; Wang, X.B. Donepezil-butylated hydroxytoluene (BHT) hybrids as Anti-Alzheimer’s disease agents with cholinergic, antioxidant, and neuroprotective properties. Eur. J. Med. Chem., 2018, 157, 161-176.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.005] [PMID: 30096650]
[84]
Berwaldt, G.A.; Gouvêa, D.P.; da Silva, D.S.; das Neves, A.M.; Soares, M.S.P.; Azambuja, J.H.; Siqueira, G.M.; Spanevello, R.M.; Cunico, W. Synthesis and biological evaluation of benzothiazin-4-ones: a possible new class of acetylcholinesterase inhibitors. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 197-203.
[http://dx.doi.org/10.1080/14756366.2018.1543286] [PMID: 30482059]
[85]
Huang, W.; Wang, Y.; Li, J.; Zhang, Y.; Ma, X.; Zhu, P.; Zhang, Y. Design, synthesis, and evaluation of genipin derivatives for the treatment of Alzheimer’s Disease. Chem. Biol. Drug Des., 2019, 93(2), 110-122.
[http://dx.doi.org/10.1111/cbdd.13194] [PMID: 29543387]
[86]
Samadi, A.; de la Fuente Revenga, M.; Pérez, C.; Iriepa, I.; Moraleda, I.; Rodríguez-Franco, M.I.; Marco-Contelles, J. Synthesis, pharmacological assessment, and molecular modeling of 6-chloro-pyridonepezils: new dual AChE inhibitors as potential drugs for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2013, 67, 64-74.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.021] [PMID: 23838422]
[87]
Jin, H. Acetylcholinesterase and butyrylcholinesterase inhibitory properties of functionalized tetrahydroacridines and related analogs. Med. Chem. (Los Angeles), 2014, 4(10), 688-696.
[http://dx.doi.org/10.4172/2161-0444.1000213]
[88]
Hussein, W.; Sağlık, B.N.; Levent, S.; Korkut, B.; Ilgın, S.; Özkay, Y.; Kaplancıklı, Z.A. Synthesis and biological evaluation of new cholinesterase inhibitors for Alzheimer’s disease. Molecules, 2018, 23(8), 2033.
[http://dx.doi.org/10.3390/molecules23082033] [PMID: 30110946]
[89]
Camps, P.; Formosa, X.; Galdeano, C.; Gómez, T.; Muñoz-Torrero, D.; Scarpellini, M.; Viayna, E.; Badia, A.; Clos, M.V.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Estelrich, J.; Lizondo, M.; Bidon-Chanal, A.; Luque, F.J. Novel donepezil-based inhibitors of acetyl- and butyrylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation. J. Med. Chem., 2008, 51(12), 3588-3598.
[http://dx.doi.org/10.1021/jm8001313] [PMID: 18517184]
[90]
Viayna, E.; Gómez, T.; Galdeano, C.; Ramírez, L.; Ratia, M.; Badia, A.; Clos, M.V.; Verdaguer, E.; Junyent, F.; Camins, A.; Pallàs, M.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Rodríguez-Franco, M.I.; Bidon-Chanal, A.; Luque, F.J.; Camps, P.; Muñoz-Torrero, D. Novel huprine derivatives with inhibitory activity toward β-amyloid aggregation and formation as disease-modifying anti-Alzheimer drug candidates. ChemMedChem, 2010, 5(11), 1855-1870.
[http://dx.doi.org/10.1002/cmdc.201000322] [PMID: 20859987]
[91]
Sola, I.; Aso, E.; Frattini, D.; López-González, I.; Espargaró, A.; Sabaté, R.; Di Pietro, O.; Luque, F.J.; Clos, M.V.; Ferrer, I.; Muñoz-Torrero, D. Novel levetiracetam derivatives that are effective against the Alzheimer-like phenotype in mice: synthesis, in vitro, ex vivo, and in vivo efficacy studies. J. Med. Chem., 2015, 58(15), 6018-6032.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00624] [PMID: 26181606]
[92]
Li, G.; Hong, G.; Li, X.; Zhang, Y.; Xu, Z.; Mao, L.; Feng, X.; Liu, T. Synthesis and activity towards Alzheimer’s disease in vitro: Tacrine, phenolic acid and ligustrazine hybrids. Eur. J. Med. Chem., 2018, 148, 238-254.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.028] [PMID: 29466774]
[93]
Hiremathad, A.; Keri, R.S.; Esteves, A.R.; Cardoso, S.M.; Chaves, S.; Santos, M.A. Novel Tacrine-Hydroxyphenylbenzimidazole hybrids as potential multitarget drug candidates for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 148, 255-267.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.023] [PMID: 29466775]
[94]
Najafi, Z.; Mahdavi, M.; Saeedi, M.; Karimpour-Razkenari, E.; Asatouri, R.; Vafadarnejad, F.; Moghadam, F.H.; Khanavi, M.; Sharifzadeh, M.; Akbarzadeh, T. Novel tacrine-1,2,3-triazole hybrids: In vitro, in vivo biological evaluation and docking study of cholinesterase inhibitors. Eur. J. Med. Chem., 2017, 125, 1200-1212.
[http://dx.doi.org/10.1016/j.ejmech.2016.11.008] [PMID: 27863370]
[95]
Jiang, X.Y.; Chen, T.K.; Zhou, J.T.; He, S.Y.; Yang, H.Y.; Chen, Y.; Qu, W.; Feng, F.; Sun, H.P. Dual GSK-3β/AChE inhibitors as a new strategy for multitargeting anti-alzheimer’s disease drug discovery. ACS Med. Chem. Lett., 2018, 9(3), 171-176.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00463] [PMID: 29541355]
[96]
Hepnarova, V.; Korabecny, J.; Matouskova, L.; Jost, P.; Muckova, L.; Hrabinova, M.; Vykoukalova, N.; Kerhartova, M.; Kucera, T.; Dolezal, R.; Nepovimova, E.; Spilovska, K.; Mezeiova, E.; Pham, N.L.; Jun, D.; Staud, F.; Kaping, D.; Kuca, K.; Soukup, O. The concept of hybrid molecules of tacrine and benzyl quinolone carboxylic acid (BQCA) as multifunctional agents for Alzheimer’s disease. Eur. J. Med. Chem., 2018, 150, 292-306.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.083] [PMID: 29533874]
[97]
Girek, M.; Szymański, P. Tacrine hybrids as multi-target-directed ligands in Alzheimer’s disease: influence of chemical structures on biological activities. Chem. Pap., 2019, 73, 269-289.
[http://dx.doi.org/10.1007/s11696-018-0590-8]
[98]
Sameem, B.; Saeedi, M.; Mahdavi, M.; Shafiee, A. A review on tacrine-based scaffolds as multi-target drugs (MTDLs) for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 128, 332-345.
[http://dx.doi.org/10.1016/j.ejmech.2016.10.060] [PMID: 27876467]
[99]
Spilovska, K.; Korabecny, J.; Nepovimova, E.; Dolezal, R.; Mezeiova, E.; Soukup, O.; Kuca, K. Multitarget tacrine hybrids with neuroprotective properties to confront Alzheimer’s disease. Curr. Top. Med. Chem., 2017, 17(9), 1006-1026.
[http://dx.doi.org/10.2174/1568026605666160927152728] [PMID: 27697055]
[100]
Camps, P.; Formosa, X.; Galdeano, C.; Muñoz-Torrero, D.; Ramírez, L.; Gómez, E.; Isambert, N.; Lavilla, R.; Badia, A.; Clos, M.V.; Bartolini, M.; Mancini, F.; Andrisano, V.; Arce, M.P.; Rodríguez-Franco, M.I.; Huertas, O.; Dafni, T.; Luque, F.J. Pyrano[3,2-c]quinoline-6-chlorotacrine hybrids as a novel family of acetylcholinesterase- and β-amyloid-directed anti-Alzheimer compounds. J. Med. Chem., 2009, 52(17), 5365-5379.
[http://dx.doi.org/10.1021/jm900859q] [PMID: 19663388]
[101]
Di Pietro, O.; Viayna, E.; Vicente-García, E.; Bartolini, M.; Ramón, R.; Juárez-Jiménez, J.; Clos, M.V.; Pérez, B.; Andrisano, V.; Luque, F.J.; Lavilla, R.; Muñoz-Torrero, D. 1,2,3,4-Tetrahydrobenzo[h][1,6]naphthyridines as a new family of potent peripheral-to-midgorge-site inhibitors of acetylcholinesterase: synthesis, pharmacological evaluation and mechanistic studies. Eur. J. Med. Chem., 2014, 73, 141-152.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.008] [PMID: 24389509]
[102]
Di Pietro, O.; Pérez-Areales, F.J.; Juárez-Jiménez, J.; Espargaró, A.; Clos, M.V.; Pérez, B.; Lavilla, R.; Sabaté, R.; Luque, F.J.; Muñoz-Torrero, D. Tetrahydrobenzo[h][1,6]naphthyridine-6-chlorotacrine hybrids as a new family of anti-Alzheimer agents targeting β-amyloid, tau, and cholinesterase pathologies. Eur. J. Med. Chem., 2014, 84, 107-117.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.021] [PMID: 25016233]
[103]
Spilovska, K.; Korabecny, J.; Sepsova, V.; Jun, D.; Hrabinova, M.; Jost, P.; Muckova, L.; Soukup, O.; Janockova, J.; Kucera, T.; Dolezal, R.; Mezeiova, E.; Kaping, D.; Kuca, K. Novel tacrine-scutellarin hybrids as multipotent anti-Alzheimer’s agents: design, synthesis and biological evaluation. Molecules, 2017, 22(6), 1006.
[http://dx.doi.org/10.3390/molecules22061006] [PMID: 28621747]
[104]
Liao, S.; Deng, H.; Huang, S.; Yang, J.; Wang, S.; Yin, B.; Zheng, T.; Zhang, D.; Liu, J.; Gao, G.; Ma, J.; Deng, Z. Design, synthesis and evaluation of novel 5,6,7-trimethoxyflavone-6-chlorotacrine hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2015, 25(7), 1541-1545.
[http://dx.doi.org/10.1016/j.bmcl.2015.02.015] [PMID: 25724825]
[105]
Wang, M.; Qin, H-L.; Leng, J.; Ameeduzzafar, ; Amjad, M.W.; Raja, M.A.G.; Hussain, M.A.; Bukhari, S.N.A. Synthesis and biological evaluation of new tetramethylpyrazine-based chalcone derivatives as potential anti-Alzheimer agents. Chem. Biol. Drug Des., 2018, 92(5), 1859-1866.
[http://dx.doi.org/10.1111/cbdd.13355] [PMID: 29923315]
[106]
Fu, Y.; Mu, Y.; Lei, H.; Wang, P.; Li, X.; Leng, Q.; Han, L.; Qu, X.; Wang, Z.; Huang, X. Design, synthesis and evaluation of novel tacrine-ferulic acid hybrids as multifunctional drug candidates against Alzheimer’s disease. Molecules, 2016, 21(10), 1338.
[http://dx.doi.org/10.3390/molecules21101338] [PMID: 27727187]
[107]
Dgachi, Y.; Martin, H.; Malek, R.; Jun, D.; Janockova, J.; Sepsova, V.; Soukup, O.; Iriepa, I.; Moraleda, I.; Maalej, E.; Carreiras, M.C.; Refouvelet, B.; Chabchoub, F.; Marco-Contelles, J.; Ismaili, L. Synthesis and biological assessment of KojoTacrines as new agents for Alzheimer’s disease therapy. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 163-170.
[http://dx.doi.org/10.1080/14756366.2018.1538136] [PMID: 30482062]
[108]
Hamulakova, S.; Poprac, P.; Jomova, K.; Brezova, V.; Lauro, P.; Drostinova, L.; Jun, D.; Sepsova, V.; Hrabinova, M.; Soukup, O.; Kristian, P.; Gazova, Z.; Bednarikova, Z.; Kuca, K.; Valko, M. Targeting copper(II)-induced oxidative stress and the acetylcholinesterase system in Alzheimer’s disease using multifunctional tacrine-coumarin hybrid molecules. J. Inorg. Biochem., 2016, 161, 52-62.
[http://dx.doi.org/10.1016/j.jinorgbio.2016.05.001] [PMID: 27230386]
[109]
Ceschi, M.A.; da Costa, J.S.; Lopes, J.P.B.; Câmara, V.S.; Campo, L.F.; Borges, A.C.A.; Gonçalves, C.A.S.; de Souza, D.F.; Konrath, E.L.; Karl, A.L.M.; Guedes, I.A.; Dardenne, L.E. Novel series of tacrine-tianeptine hybrids: Synthesis, cholinesterase inhibitory activity, S100B secretion and a molecular modeling approach. Eur. J. Med. Chem., 2016, 121, 758-772.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.025] [PMID: 27392529]
[110]
Makhaeva, G.F.; Grigoriev, V.V.; Proshin, A.N.; Kovaleva, N.V.; Rudakova, E.V.; Boltneva, N.P.; Serkov, I.V.; Bachurin, S.O. Novel conjugates of tacrine with 1,2,4,-thiadiazole as highly effective cholinesterase inhibitors, blockers of NMDA receptors, and antioxidants. Dokl. Biochem. Biophys., 2017, 477(1), 405-409.
[http://dx.doi.org/10.1134/S1607672917060163] [PMID: 29297118]
[111]
Luo, W.; Li, Y.P.; He, Y.; Huang, S.L.; Tan, J.H.; Ou, T.M.; Li, D.; Gu, L.Q.; Huang, Z.S. Design, synthesis and evaluation of novel tacrine-multialkoxybenzene hybrids as dual inhibitors for cholinesterases and amyloid beta aggregation. Bioorg. Med. Chem., 2011, 19(2), 763-770.
[http://dx.doi.org/10.1016/j.bmc.2010.12.022] [PMID: 21211982]
[112]
Bareggi, S.R.; Cornelli, U. Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci. Ther., 2012, 18(1), 41-46.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00231.x] [PMID: 21199452]
[113]
Di Vaira, M.; Bazzicalupi, C.; Orioli, P.; Messori, L.; Bruni, B.; Zatta, P. Clioquinol, a drug for Alzheimer’s disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg. Chem., 2004, 43(13), 3795-3797.
[http://dx.doi.org/10.1021/ic0494051] [PMID: 15206857]
[114]
Hu, J.; Pan, T.; An, B.; Li, Z.; Li, X.; Huang, L. Synthesis and evaluation of clioquinol-rolipram/roflumilast hybrids as multitarget-directed ligands for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2019, 163, 512-526.
[http://dx.doi.org/10.1016/j.ejmech.2018.12.013] [PMID: 30553143]
[115]
Song, Q.; Li, Y.; Cao, Z.; Liu, H.; Tian, C.; Yang, Z.; Qiang, X.; Tan, Z.; Deng, Y. Discovery of novel 2,5-dihydroxyterephthalamide derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(23-24), 6115-6127.
[http://dx.doi.org/10.1016/j.bmc.2018.11.015] [PMID: 30470598]
[116]
Li, F.; Wu, J.J.; Wang, J.; Yang, X.L.; Cai, P.; Liu, Q.H.; Kong, L.Y.; Wang, X.B. Synthesis and pharmacological evaluation of novel chromone derivatives as balanced multifunctional agents against Alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(14), 3815-3826.
[http://dx.doi.org/10.1016/j.bmc.2017.05.027] [PMID: 28549891]
[117]
Xie, S.; Chen, J.; Li, X.; Su, T.; Wang, Y.; Wang, Z.; Huang, L.; Li, X. Synthesis and evaluation of selegiline derivatives as monoamine oxidase inhibitor, antioxidant and metal chelator against Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(13), 3722-3729.
[http://dx.doi.org/10.1016/j.bmc.2015.04.009] [PMID: 25934229]
[118]
Grandy, K.; Melatonin, J. Therapeutic Intervention in Mild Cognitive Impairment and Alzheimer Disease. J. Neurol. Neurophysiol., 2013, 04(02), 2-7.
[http://dx.doi.org/10.4172/2155-9562.1000148]
[119]
Cheng, S.; Zheng, W.; Gong, P.; Zhou, Q.; Xie, Q.; Yu, L.; Zhang, P.; Chen, L.; Li, J.; Chen, J.; Chen, H.; Chen, H. (-)-Meptazinol-melatonin hybrids as novel dual inhibitors of cholinesterases and amyloid-β aggregation with high antioxidant potency for Alzheimer’s therapy. Bioorg. Med. Chem., 2015, 23(13), 3110-3118.
[http://dx.doi.org/10.1016/j.bmc.2015.04.084] [PMID: 26025073]
[120]
López-Iglesias, B.; Pérez, C.; Morales-García, J.A.; Alonso-Gil, S.; Pérez-Castillo, A.; Romero, A.; López, M.G.; Villarroya, M.; Conde, S.; Rodríguez-Franco, M.I. New melatonin-N,N-dibenzyl(N-methyl)amine hybrids: potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. J. Med. Chem., 2014, 57(9), 3773-3785.
[http://dx.doi.org/10.1021/jm5000613] [PMID: 24738476]
[121]
Borges, F.; Roleira, F.; Milhazes, N.; Santana, L.; Uriarte, E. Simple coumarins and analogues in medicinal chemistry: occurrence, synthesis and biological activity. Curr. Med. Chem., 2005, 12(8), 887-916.
[http://dx.doi.org/10.2174/0929867053507315] [PMID: 15853704]
[122]
Stefanachi, A.; Leonetti, F.; Pisani, L.; Catto, M.; Carotti, A. Coumarin: a natural; privileged and versatile scaffold for bioactive compounds. Molecules, 2018, 23(2). pii: E250
[123]
Jiang, N.; Huang, Q.; Liu, J.; Liang, N.; Li, Q.; Li, Q.; Xie, S.S. Design, synthesis and biological evaluation of new coumarin-dithiocarbamate hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2018, 146, 287-298.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.055] [PMID: 29407958]
[124]
He, Q.; Liu, J.; Lan, J.S.; Ding, J.; Sun, Y.; Fang, Y.; Jiang, N.; Yang, Z.; Sun, L.; Jin, Y.; Xie, S.S. Coumarin-dithiocarbamate hybrids as novel multitarget AChE and MAO-B inhibitors against Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2018, 81(September), 512-528.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.010] [PMID: 30245233]
[125]
Vafadarnejad, F.; Mahdavi, M.; Karimpour-Razkenari, E.; Edraki, N.; Sameem, B.; Khanavi, M.; Saeedi, M.; Akbarzadeh, T. Design and synthesis of novel coumarin-pyridinium hybrids: In vitro cholinesterase inhibitory activity. Bioorg. Chem., 2018, 77, 311-319.
[http://dx.doi.org/10.1016/j.bioorg.2018.01.013] [PMID: 29421707]
[126]
Jalili-Baleh, L.; Nadri, H.; Forootanfar, H.; Samzadeh-Kermani, A.; Küçükkılınç, T.T.; Ayazgok, B.; Rahimifard, M.; Baeeri, M.; Doostmohammadi, M.; Firoozpour, L.; Bukhari, S.N.A.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Novel 3-phenylcoumarin-lipoic acid conjugates as multi-functional agents for potential treatment of Alzheimer’s disease. Bioorg. Chem., 2018, 79, 223-234.
[http://dx.doi.org/10.1016/j.bioorg.2018.04.030] [PMID: 29775948]
[127]
Jalili-Baleh, L.; Forootanfar, H.; Küçükkılınç, T.T.; Nadri, H.; Abdolahi, Z.; Ameri, A.; Jafari, M.; Ayazgok, B.; Baeeri, M.; Rahimifard, M.; Abbas Bukhari, S.N.; Abdollahi, M.; Ganjali, M.R.; Emami, S.; Khoobi, M.; Foroumadi, A. Design, synthesis and evaluation of novel multi-target-directed ligands for treatment of Alzheimer’s disease based on coumarin and lipoic acid scaffolds. Eur. J. Med. Chem., 2018, 152, 600-614.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.058] [PMID: 29763808]
[128]
Yang, H.L.; Cai, P.; Liu, Q.H.; Yang, X.L.; Li, F.; Wang, J.; Wu, J.J.; Wang, X.B.; Kong, L.Y. Design, synthesis and evaluation of coumarin-pargyline hybrids as novel dual inhibitors of monoamine oxidases and amyloid-β aggregation for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 138, 715-728.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.008] [PMID: 28728104]
[129]
Lan, J.S.; Ding, Y.; Liu, Y.; Kang, P.; Hou, J.W.; Zhang, X.Y.; Xie, S.S.; Zhang, T. Design, synthesis and biological evaluation of novel coumarin-N-benzyl pyridinium hybrids as multi-target agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139, 48-59.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.055] [PMID: 28797883]
[130]
Shishodia, S. Molecular mechanisms of curcumin action: gene expression. Biofactors, 2013, 39(1), 37-55.
[http://dx.doi.org/10.1002/biof.1041] [PMID: 22996381]
[131]
Orteca, G.; Tavanti, F.; Bednarikova, Z.; Gazova, Z.; Rigillo, G.; Imbriano, C.; Basile, V.; Asti, M.; Rigamonti, L.; Saladini, M.; Ferrari, E.; Menziani, M.C. Curcumin derivatives and Aβ-fibrillar aggregates: An interactions’ study for diagnostic/therapeutic purposes in neurodegenerative diseases. Bioorg. Med. Chem., 2018, 26(14), 4288-4300.
[http://dx.doi.org/10.1016/j.bmc.2018.07.027] [PMID: 30031653]
[132]
Lan, J.S.; Hou, J.W.; Liu, Y.; Ding, Y.; Zhang, Y.; Li, L.; Zhang, T. Design, synthesis and evaluation of novel cinnamic acid derivatives bearing N-benzyl pyridinium moiety as multifunctional cholinesterase inhibitors for Alzheimer’s disease. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 776-788.
[http://dx.doi.org/10.1080/14756366.2016.1256883] [PMID: 28585866]
[133]
Fang, L.; Chen, M.; Liu, Z.; Fang, X.; Gou, S.; Chen, L. Ferulic acid-carbazole hybrid compounds: Combination of cholinesterase inhibition, antioxidant and neuroprotection as multifunctional anti-Alzheimer agents. Bioorg. Med. Chem., 2016, 24(4), 886-893.
[http://dx.doi.org/10.1016/j.bmc.2016.01.010] [PMID: 26795115]
[134]
Tang, Y-W.; Shi, C-J.; Yang, H-L.; Cai, P.; Liu, Q-H.; Yang, X-L.; Kong, L-Y.; Wang, X-B. Synthesis and evaluation of isoprenylation-resveratrol dimer derivatives against Alzheimer’s disease. Eur. J. Med. Chem., 2019, 163, 307-319.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.040] [PMID: 30529634]
[135]
Bastianetto, S.; Ménard, C.; Quirion, R. Neuroprotective action of resveratrol. Biochim. Biophys. Acta, 2015, 1852(6), 1195-1201.
[http://dx.doi.org/10.1016/j.bbadis.2014.09.011] [PMID: 25281824]
[136]
Regitz, C.; Fitzenberger, E.; Mahn, F.L.; Dußling, L.M.; Wenzel, U. Resveratrol reduces amyloid-beta (Aβ1−42)-induced paralysis through targeting proteostasis in an Alzheimer model of Caenorhabditis elegans. Eur. J. Nutr., 2016, 55(2), 741-747.
[http://dx.doi.org/10.1007/s00394-015-0894-1] [PMID: 25851110]
[137]
Schweiger, S.; Matthes, F.; Posey, K.; Kickstein, E.; Weber, S.; Hettich, M.M.; Pfurtscheller, S.; Ehninger, D.; Schneider, R.; Krauß, S. Resveratrol induces dephosphorylation of Tau by interfering with the MID1-PP2A complex. Sci. Rep., 2017, 7(1), 13753.
[http://dx.doi.org/10.1038/s41598-017-12974-4] [PMID: 29062069]
[138]
Cheng, G.; Xu, P.; Zhang, M.; Chen, J.; Sheng, R.; Ma, Y. Resveratrol-maltol hybrids as multi-target-directed agents for Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(22), 5759-5765.
[http://dx.doi.org/10.1016/j.bmc.2018.08.011] [PMID: 30360953]
[139]
Yang, X.; Qiang, X.; Li, Y.; Luo, L.; Xu, R.; Zheng, Y.; Cao, Z.; Tan, Z.; Deng, Y. Pyridoxine-resveratrol hybrids Mannich base derivatives as novel dual inhibitors of AChE and MAO-B with antioxidant and metal-chelating properties for the treatment of Alzheimer’s disease. Bioorg. Chem., 2017, 71, 305-314.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.016] [PMID: 28267984]
[140]
Xu, P.; Zhang, M.; Sheng, R.; Ma, Y. Synthesis and biological evaluation of deferiprone-resveratrol hybrids as antioxidants, Aβ1-42 aggregation inhibitors and metal-chelating agents for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 127, 174-186.
[http://dx.doi.org/10.1016/j.ejmech.2016.12.045] [PMID: 28061347]
[141]
Chojnacki, J.E.; Liu, K.; Yan, X.; Toldo, S.; Selden, T.; Estrada, M.; Rodríguez-Franco, M.I.; Halquist, M.S.; Ye, D.; Zhang, S. Discovery of 5-(4-hydroxyphenyl)-3-oxo-pentanoic acid [2-(5-methoxy-1H-indol-3-yl)-ethyl]-amide as a neuroprotectant for Alzheimer’s disease by hybridization of curcumin and melatonin. ACS Chem. Neurosci., 2014, 5(8), 690-699.
[http://dx.doi.org/10.1021/cn500081s] [PMID: 24825313]
[142]
Lan, J.S.; Liu, Y.; Hou, J.W.; Yang, J.; Zhang, X.Y.; Zhao, Y.; Xie, S.S.; Ding, Y.; Zhang, T. Design, synthesis and evaluation of resveratrol-indazole hybrids as novel monoamine oxidases inhibitors with amyloid-β aggregation inhibition. Bioorg. Chem., 2018, 76, 130-139.
[http://dx.doi.org/10.1016/j.bioorg.2017.11.009] [PMID: 29172101]
[143]
Cao, Z.; Yang, J.; Xu, R.; Song, Q.; Zhang, X.; Liu, H.; Qiang, X.; Li, Y.; Tan, Z.; Deng, Y. Design, synthesis and evaluation of 4′-OH-flurbiprofen-chalcone hybrids as potential multifunctional agents for Alzheimer’s disease treatment. Bioorg. Med. Chem., 2018, 26(5), 1102-1115.
[http://dx.doi.org/10.1016/j.bmc.2018.01.030] [PMID: 29409707]
[144]
Carreras, I.; McKee, A.C.; Choi, J.K.; Aytan, N.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. R-flurbiprofen improves tau, but not Aß pathology in a triple transgenic model of Alzheimer’s disease. Brain Res., 2013, 1541, 115-127.
[http://dx.doi.org/10.1016/j.brainres.2013.10.025] [PMID: 24161403]
[145]
Cheng, X.; Shen, Y.; Li, R. Targeting TNF: a therapeutic strategy for Alzheimer’s disease. Drug Discov. Today, 2014, 19(11), 1822-1827.
[http://dx.doi.org/10.1016/j.drudis.2014.06.029] [PMID: 24998784]
[146]
de Freitas Silva, M.; Pruccoli, L.; Morroni, F.; Sita, G.; Seghetti, F.; Viegas, C.; Tarozzi, A. The Keap1/Nrf2-ARE Pathway as a Pharmacological Target for Chalcones. Molecules, 2018, 23(7), 1-22.
[http://dx.doi.org/10.3390/molecules23071803] [PMID: 30037040]
[147]
Telpoukhovskaia, M.A.; Patrick, B.O.; Rodríguez-Rodríguez, C.; Orvig, C. Exploring the multifunctionality of thioflavin- and deferiprone-based molecules as acetylcholinesterase inhibitors for potential application in Alzheimer’s disease. Mol. Biosyst., 2013, 9(4), 792-805.
[http://dx.doi.org/10.1039/c3mb25600f] [PMID: 23435553]
[148]
Song, Q.; Li, Y.; Cao, Z.; Qiang, X.; Tan, Z.; Deng, Y. Novel salicylamide derivatives as potent multifunctional agents for the treatment of Alzheimer’s disease: Design, synthesis and biological evaluation. Bioorg. Chem., 2019, 84(84), 137-149.
[http://dx.doi.org/10.1016/j.bioorg.2018.11.022] [PMID: 30500523]
[149]
Bolognesi, M.L.; Cavalli, A.; Melchiorre, C. Memoquin: a multi-target-directed ligand as an innovative therapeutic opportunity for Alzheimer’s disease. Neurotherapeutics, 2009, 6(1), 152-162.
[http://dx.doi.org/10.1016/j.nurt.2008.10.042] [PMID: 19110206]
[150]
Pan, W.; Hu, K.; Bai, P.; Yu, L.; Ma, Q.; Li, T.; Zhang, X.; Chen, C.; Peng, K.; Liu, W.; Sang, Z. Design, synthesis and evaluation of novel ferulic acid-memoquin hybrids as potential multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2016, 26(10), 2539-2543.
[http://dx.doi.org/10.1016/j.bmcl.2016.03.086] [PMID: 27072909]
[151]
Wang, J.; Cai, P.; Yang, X-L.; Li, F.; Wu, J-J.; Kong, L-Y.; Wang, X-B. Novel cinnamamide-dibenzylamine hybrids: Potent neurogenic agents with antioxidant, cholinergic, and neuroprotective properties as innovative drugs for Alzheimer’s disease. Eur. J. Med. Chem., 2017, 139(9), 68-83.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.077] [PMID: 28800459]
[152]
Hu, J.; An, B.; Pan, T.; Li, Z.; Huang, L.; Li, X. Design, synthesis, and biological evaluation of histone deacetylase inhibitors possessing glutathione peroxidase-like and antioxidant activities against Alzheimer’s disease. Bioorg. Med. Chem., 2018, 26(21), 5718-5729.
[http://dx.doi.org/10.1016/j.bmc.2018.10.022] [PMID: 30385227]
[153]
Oliveira, C.; Cagide, F.; Teixeira, J.; Amorim, R.; Sequeira, L.; Mesiti, F.; Silva, T.; Garrido, J.; Remião, F.; Vilar, S.; Uriarte, E.; Oliveira, P.J.; Borges, F. Hydroxybenzoic acid derivatives as dual-target ligands: mitochondriotropic antioxidants and cholinesterase inhibitors. Front Chem., 2018, 6, 126.
[http://dx.doi.org/10.3389/fchem.2018.00126] [PMID: 29740575]
[154]
Sang, Z.; Wang, K.; Han, X.; Cao, M.; Tan, Z.; Liu, W. Design, synthesis, and evaluation of novel ferulic acid derivatives as multi-target-directed ligands for the treatment of alzheimer’s disease. ACS Chem. Neurosci., 2019, 10(2), 1008-1024.
[http://dx.doi.org/10.1021/acschemneuro.8b00530] [PMID: 30537804]
[155]
Panek, D.; Więckowska, A.; Pasieka, A.; Godyń, J.; Jończyk, J.; Bajda, M.; Knez, D.; Gobec, S.; Malawska, B. Design, synthesis, and biological evaluation of 2-(benzylamino-2-hydroxyalkyl)isoindoline-1,3-diones derivatives as potential disease-modifying multifunctional anti-alzheimer agents. Molecules, 2018, 23(2), 1-15.
[http://dx.doi.org/10.3390/molecules23020347] [PMID: 29414887]
[156]
Sang, Z.; Li, Y.; Qiang, X.; Xiao, G.; Liu, Q.; Tan, Z.; Deng, Y. Multifunctional scutellarin-rivastigmine hybrids with cholinergic, antioxidant, biometal chelating and neuroprotective properties for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2015, 23(4), 668-680.
[http://dx.doi.org/10.1016/j.bmc.2015.01.005] [PMID: 25614117]
[157]
Xiao, G.; Li, Y.; Qiang, X.; Xu, R.; Zheng, Y.; Cao, Z.; Luo, L.; Yang, X.; Sang, Z.; Su, F.; Deng, Y. Design, synthesis and biological evaluation of 4′-aminochalcone-rivastigmine hybrids as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem., 2017, 25(3), 1030-1041.
[http://dx.doi.org/10.1016/j.bmc.2016.12.013] [PMID: 28011206]
[158]
Bender, A.T.; Beavo, J.A. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol. Rev., 2006, 58(3), 488-520.
[http://dx.doi.org/10.1124/pr.58.3.5] [PMID: 16968949]
[159]
Castro, A.; Jerez, M.J.; Gil, C.; Martinez, A. Cyclic nucleotide phosphodiesterases and their role in immunomodulatory responses: advances in the development of specific phosphodiesterase inhibitors. Med. Res. Rev., 2005, 25(2), 229-244.
[http://dx.doi.org/10.1002/med.20020] [PMID: 15514991]
[160]
Francis, S.H.; Blount, M.A.; Corbin, J.D. Mammalian cyclic nucleotide phosphodiesterases: molecular mechanisms and physiological functions. Physiol. Rev., 2011, 91(2), 651-690.
[http://dx.doi.org/10.1152/physrev.00030.2010] [PMID: 21527734]
[161]
Li, J.; Chen, J-Y.; Deng, Y-L.; Zhou, Q.; Wu, Y.; Wu, D.; Luo, H-B. Structure-based design, synthesis, biological evaluation, and molecular docking of novel pde10 inhibitors with antioxidant activities. Front Chem., 2018, 6(May), 167.
[http://dx.doi.org/10.3389/fchem.2018.00167] [PMID: 29868568]
[162]
Haghighijoo, Z.; Firuzi, O.; Hemmateenejad, B.; Emami, S.; Edraki, N.; Miri, R. Synthesis and biological evaluation of quinazolinone-based hydrazones with potential use in Alzheimer’s disease. Bioorg. Chem., 2017, 74, 126-133.
[http://dx.doi.org/10.1016/j.bioorg.2017.07.014] [PMID: 28780149]
[163]
Huang, W.; Tang, L.; Shi, Y.; Huang, S.; Xu, L.; Sheng, R.; Wu, P.; Li, J.; Zhou, N.; Hu, Y. Searching for the Multi-Target-Directed Ligands against Alzheimer’s disease: discovery of quinoxaline-based hybrid compounds with ache, hr and bace 1 inhibitory activities. Bioorg. Med. Chem., 2011, 19(23), 7158-7167.
[http://dx.doi.org/10.1016/j.bmc.2011.09.061] [PMID: 22019465]
[164]
Deng, Y.; Jiang, Y.; Zhao, X.; Wang, J. Design synthesize and bio-evaluate 1,2-dihydroisoquinolin-3(4H)-one derivates as acetylcholinesterase and β-secretase dual inhibitors in treatment with alzheimer’s disease. J. Biosci. Med. (Irvine), 2016, 112-123.
[http://dx.doi.org/10.4236/jbm.2016.41014]
[165]
Hong, C.; Guo, H.Y.; Chen, S.; Lv, J.W.; Zhang, X.; Yang, Y.C.; Huang, K.; Zhang, Y.J.; Tian, Z.Y.; Luo, W.; Chen, Y.P. Synthesis and biological evaluation of genistein-O-alkylamine derivatives as potential multifunctional anti-Alzheimer agents. Chem. Biol. Drug Des., 2019, 93(2), 188-200.
[http://dx.doi.org/10.1111/cbdd.13414] [PMID: 30299583]
[166]
Rizzo, S.; Tarozzi, A.; Bartolini, M.; Da Costa, G.; Bisi, A.; Gobbi, S.; Belluti, F.; Ligresti, A.; Allarà, M.; Monti, J.P.; Andrisano, V.; Di Marzo, V.; Hrelia, P.; Rampa, A. 2-Arylbenzofuran-based molecules as multipotent Alzheimer’s disease modifying agents. Eur. J. Med. Chem., 2012, 58, 519-532.
[http://dx.doi.org/10.1016/j.ejmech.2012.10.045] [PMID: 23164658]
[167]
Nadri, H.; Pirali-Hamedani, M.; Shekarchi, M.; Abdollahi, M.; Sheibani, V.; Amanlou, M.; Shafiee, A.; Foroumadi, A. Design, synthesis and anticholinesterase activity of a novel series of 1-benzyl-4-((6-alkoxy-3-oxobenzofuran-2(3H)-ylidene) methyl) pyridinium derivatives. Bioorg. Med. Chem., 2010, 18(17), 6360-6366.
[http://dx.doi.org/10.1016/j.bmc.2010.07.012] [PMID: 20673725]
[168]
Nencini, A.; Castaldo, C.; Comery, T.A.; Dunlop, J.; Genesio, E.; Ghiron, C.; Haydar, S.; Maccari, L.; Micco, I.; Turlizzi, E.; Zanaletti, R.; Zhang, J. Design and synthesis of a hybrid series of potent and selective agonists of α7 nicotinic acetylcholine receptor. Eur. J. Med. Chem., 2014, 78, 401-418.
[http://dx.doi.org/10.1016/j.ejmech.2014.03.031] [PMID: 24704613]
[169]
Sang, Z.; Wang, K.; Wang, H.; Wang, H.; Ma, Q.; Han, X.; Ye, M.; Yu, L.; Liu, W. Design, synthesis and biological evaluation of 2-acetyl-5-O-(amino-alkyl)phenol derivatives as multifunctional agents for the treatment of Alzheimer’s disease. Bioorg. Med. Chem. Lett., 2017, 27(22), 5046-5052.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.057] [PMID: 29033233]
[170]
Dalpiaz, A.; Cacciari, B.; Vicentini, C.B.; Bortolotti, F.; Spalluto, G.; Federico, S.; Pavan, B.; Vincenzi, F.; Borea, P.A.; Varani, K. A novel conjugated agent between dopamine and an A2A adenosine receptor antagonist as a potential anti-Parkinson multitarget approach. Mol. Pharm., 2012, 9(3), 591-604.
[http://dx.doi.org/10.1021/mp200489d] [PMID: 22292533]
[171]
Chauhan, K.; Sharma, M.; Saxena, J.; Singh, S.V.; Trivedi, P.; Srivastava, K.; Puri, S.K.; Saxena, J.K.; Chaturvedi, V.; Chauhan, P.M.S. Synthesis and biological evaluation of a new class of 4-aminoquinoline-rhodanine hybrid as potent anti-infective agents. Eur. J. Med. Chem., 2013, 62, 693-704.
[http://dx.doi.org/10.1016/j.ejmech.2013.01.017] [PMID: 23454512]
[172]
Piazzi, L.; Rampa, A.; Bisi, A.; Gobbi, S.; Belluti, F.; Cavalli, A.; Bartolini, M.; Andrisano, V.; Valenti, P.; Recanatini, M. 3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced β-amyloid aggregation: a dual function lead for Alzheimer’s disease therapy. J. Med. Chem., 2003, 46(12), 2279-2282.
[http://dx.doi.org/10.1021/jm0340602] [PMID: 12773032]
[173]
Abdelhafez, O.M.; Amin, K.M.; Ali, H.I.; Maher, T.J.; Batran, R.Z. Dopamine release and molecular modeling study of some coumarin derivatives. Neurochem. Int., 2011, 59(6), 906-912.
[http://dx.doi.org/10.1016/j.neuint.2011.08.004] [PMID: 21871512]
[174]
Sashidhara, K.V.; Modukuri, R.K.; Jadiya, P.; Rao, K.B.; Sharma, T.; Haque, R.; Singh, D.K.; Banerjee, D.; Siddiqi, M.I.; Nazir, A. discovery of 3-arylcoumarin-tetracyclic tacrine hybrids as multifunctional agents against parkinson’s disease. ACS Med. Chem. Lett., 2014, 5(10), 1099-1103.
[http://dx.doi.org/10.1021/ml500222g] [PMID: 25313319]
[175]
Buendia, I.; Navarro, E.; Michalska, P.; Gameiro, I.; Egea, J.; Abril, S.; López, A.; González-Lafuente, L.; López, M.G.; León, R. New melatonin-cinnamate hybrids as multi-target drugs for neurodegenerative diseases: Nrf2-induction, antioxidant effect and neuroprotection. Future Med. Chem., 2015, 7(15), 1961-1969.
[http://dx.doi.org/10.4155/fmc.15.99] [PMID: 26496465]
[176]
Affini, A.; Hagenow, S.; Zivkovic, A.; Marco-Contelles, J.; Stark, H. Novel indanone derivatives as MAO B/H3R dual-targeting ligands for treatment of Parkinson’s disease. Eur. J. Med. Chem., 2018, 148, 487-497.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.015] [PMID: 29477889]
[177]
Elmabruk, A.; Das, B.; Yedlapudi, D.; Xu, L.; Antonio, T.; Reith, M.E.A.; Dutta, A.K. Design, synthesis, and pharmacological characterization of carbazole based dopamine agonists as potential symptomatic and neuroprotective therapeutic agents for parkinson’s disease. ACS Chem. Neurosci., 2019, 10(1), 396-411.
[http://dx.doi.org/10.1021/acschemneuro.8b00291] [PMID: 30301349]
[178]
Zindo, F.T.; Malan, S.F.; Omoruyi, S.I.; Enogieru, A.B.; Ekpo, O.E.; Joubert, J. Design, synthesis and evaluation of pentacycloundecane and hexacycloundecane propargylamine derivatives as multifunctional neuroprotective agents. Eur. J. Med. Chem., 2019, 163, 83-94.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.051] [PMID: 30503945]
[179]
Calabrò, M.L.; Caputo, R.; Ettari, R.; Puia, G.; Ravazzini, F.; Zappalà, M.; Micale, N. Synthesis and biological evaluation of new 2-amino-6-(trifluoromethoxy) benzoxazole derivatives, analogues of riluzole. Med. Chem. Res., 2013, 22(12), 6089-6095.
[http://dx.doi.org/10.1007/s00044-013-0594-4]
[180]
Sweeney, J.B.; Rattray, M.; Pugh, V.; Powell, L.A. Riluzole-triazole hybrids as novel chemical probes for neuroprotection in amyotrophic lateral sclerosis. ACS Med. Chem. Lett., 2018, 9(6), 552-556.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00103] [PMID: 29937981]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy